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The Tomonaga-Luttinger liquid (TLL) theory describes the low-energy excitations of strongly
correlated one-dimensional (1D) fermions. In the past years, a number of studies have provided
a detailed understanding of this universality class. More recently, theoretical investigations that
go beyond the standard low-temperature, linear-response, TLL regime have emerged as an active
area of research. While these provide a basis for understanding the dynamics of the spin-incoherent
Luttinger liquid, there are few experimental investigations in this regime. Here we report the
observation of a thermally-induced spin-incoherent Luttinger liquid in an atomic Fermi gas confined
to 1D. We use Bragg spectroscopy to measure the suppression of spin-charge separation and the
decay of correlations as the temperature is increased. Our results probe the crossover between the
coherent and incoherent regimes of the Luttinger liquid, and elucidate the interplay between the
charge and the spin degrees of freedom in this regime.

Studies of strongly interacting atomic gases
in 1D, aided by exactly solvable models[1–6],
have provided remarkable insight into the physics
of highly-correlated quantum many-body systems
with regimes that are increasingly accessible to
experiment[7–14]. The low-energy properties of
fermions in 1D are particularly well understood in
terms of the TLL theory [15–19], which exhibits a
spin-charge separation of the low-energy collective
spin- and charge-density waves (SDWs/CDWs) that
are bosonic in nature and propagate with different
velocities. At its core, the standard TLL univer-
sality class is characterized by collective excitations
that are coherent and linearly dispersing. Several
regimes, however, have been found to extend be-
yond this spin-charge separation paradigm, allowing
access to new classes of unconventional Luttinger
liquids where the coherence of the excitations is
disrupted[20–22]. The introduction of higher-order
interaction effects such as band-curvature and back-
scattering, for example, gives rise to the so-called
nonlinear Luttinger liquid [23], for which the linear-
ity of the dispersion is disrupted. Spin polarization
is expected to control a quantum phase transition, at
which the TLL turns quantum critical and all ther-
modynamic quantities exhibit universal scaling[22].
Allowing for anisotropic coupling between 1D chains
of fermions could realize the sliding Luttinger liq-
uid (SLL) phase[24]. Topological materials such as
single- and bi-layer graphene [25] may enable access
to phases such as chiral Luttinger liquids[26] (χLL),
which host excitation modes with a preferred sense
of propagation.

Finite temperature represents another pathway
for disrupting the correlations in a TLL (Fig. 1a).
In the low temperature (T ) limit, the thermal en-
ergy kBT is the lowest energy scale and both the

Fig. 1. Energy hierarchy of a Luttinger liquid. a,
Schematic diagram showing the energy regimes of a Lut-
tinger liquid in the spin-coherent (SC), spin-incoherent
(SI) and charge-incoherent (CI) regimes, illustrating the
effect of decoherence of the spin and charge correlations.
b, Crossover hierarchy of a quasi-1D atomic Fermi gas
(see Methods). The incoherent regimes can be reached
either by increasing the scattering length a, increasing
the temperature T , or by reducing the number of atoms
per tube, N . Dashed lines correspond to the boundaries
between the different regimes, defined by Es ' kBT and
Ec ' kBT . Solid line illustrates a trajectory correspond-
ing to constant N and a. As T is increased, the system
first loses its spin coherence for Es < kBT < Ec, and
at a sufficiently high T , such that Es < Ec < kBT , all
coherence in the system is lost.

charge- and spin-density waves propagate coherently
in accordance with the standard TLL theory, thus
defining the spin-coherent (SC) regime. As T is in-
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creased, thermal fluctuations disrupt the coherence
in the spin sector first, and the system enters the
spin-incoherent (SI) Luttinger liquid regime[27]. In
the SI regime, spin-spin correlations are expected to
exhibit a rapid exponential decay while the density-
density correlations retain a slower algebraic decay,
leading to correlations that are completely inde-
pendent from the spin sector[28]. The SI regime
has been investigated theoretically with the Bethe
ansatz [28, 29] and a bosonized path integral ap-
proach [30–32] to describe both fermions[33] and
bosons[34]. Recent studies have also identified den-
sity correlations [28, 33, 35] that distinguish the
SC and the SI regimes. Experimental evidence for
the SI regime, however, remains scarce. Studies of
quasi-1D solid-state materials using angle-resolved
photoemission spectroscopy [36, 37] have suggested
that signatures of the SI arise for small electron
densities[38]. The control and tunability afforded
by ultracold gases, on the other hand, have proven
to be advantageous for the systematic study of Lut-
tinger liquid physics [10–12, 14]. Here we explore the
crossover between a SC Luttinger liquid and the SI
regime in a pseudo-spin-1/2 gas of 6Li atoms loaded
into an array of 1D waveguides. We use Bragg spec-
troscopy to show the suppression of spin-charge sep-
aration and the systematic loss of coherence with
increasing T . Surprisingly, signatures of the spin
degree of freedom persist even for T > TF , where
TF is the Fermi temperature.

Spin-charge separation arises from an energy gap
between the excitation energies at fixed momentum
~q for the spin and the charge sectors of the TLL
Hamiltonian. We associate the energies of the spin-
and charge-density waves by Es and Ec, respec-
tively. The speed of the SDW is less than that of
the CDW[1], and thus Es < Ec in the SC regime.
In the SI regime, where kBT > Es, the spin con-
figurations are mixed, even while the charge corre-
lations remain unaffected. Consequently, the CDW
remains the dominant propagating mode [32]. For
sufficiently high T , such that kBT > Ec, the co-
herence in both sectors is expected to vanish, thus
defining the charge-incoherent (CI) regime. The in-
terplay between T , interaction strength, and waveg-
uide occupancy N defines an energy hierarchy for
the Luttinger liquid, as shown schematically in Fig.
1b. These regimes, whose properties are not well
understood[27], are expected to be separated by
smooth crossovers.

Our methods for preparing and probing quan-
tum degenerate, pseudo-spin-1/2 Fermi gases of 6Li
atoms, and characterizing them by Bragg spec-
troscopy, have been described previously[12, 14, 39]

(see Methods). We realize a pseudo-spin-1/2 sys-
tem using a balanced spin mixture of the lowest and
third-to-lowest hyperfine ground states of 6Li, which
we label as |1〉 and |3〉. The interactions depend on
the s-wave scattering length, a, which is fixed to be
500 a0, where a0 is the Bohr radius, by using the
|1〉-|3〉 magnetic Feshbach resonance located at 690
G [40]. We found that 500 a0 is the largest value of a
achievable without incurring an unacceptably large
atom loss arising from 3-body recombination [12].

We vary T by modifying the duration and depth of
the evaporative cooling trajectory first in a crossed-
beam dipole trap and then in a 3D “dimple” trap.
Following evaporation, the atoms are loaded into a
3D optical lattice, and then into a 2D optical lattice
with a depth of 15 Er, where Er = 1.4 µK is the
recoil energy due to a lattice photon of wavelength
1064 nm. The result is a sample of 6.5 × 104 atoms
distributed over an array of quasi-1D tubes. The
Gaussian curvature in our confining beams results in
an inhomogeneous number profile, N(r), where r is
the cylindrical coordinate perpendicular to the axis
of each waveguide. We compensate for this effect by
introducing anti-confining, single-passed laser beams
(532 nm) along each of the three orthogonal direc-
tions during the 3D lattice ramping[12, 39]. Ad-
justing the power of the anti-confining beams allows
us to maintain a comparable N(r) profile for each
value of T within a range ∆T . 1 µK. We focused
our studies on the range of 500-1500 nK, which is
found to cover the incoherent regimes, SI and CI,
while still distinguishing a clear spin-charge separa-
tion (vs < vc) at the lower end of the range of T .
Our lowest T of 500 nK is approximately twice the
temperature used in Ref. 14. Because the highest T
accessed is sufficiently below the radial confinement
energy, the atoms are in the quasi-1D regime in all
cases.

Bragg spectroscopy can be used to separately ex-
cite density waves in the charge (spin) sector by ap-
propriately detuning the Bragg beams to generate a
symmetric (antisymmetric) light shift with respect
to the two spin states [14] (Supplementary Fig. 1).
Since the Bragg pulse imparts both a momentum
~q and an energy quantum ~ω per atom, we can
determine the speed of propagation of the excita-
tions (see Methods). The Bragg-induced momen-
tum kick results in outcoupling a fraction of the
atoms, the size of which constitutes the measure-
ment signal[10, 12, 14]. It can be shown that this
value is directly proportional to the dynamic struc-
ture factor Ss,c(q, ω) of the gas [41–43], which en-
codes the density-density correlations [44] in the spin
and charge sectors, denoted by subscripts “s” and
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Fig. 2. Temperature effects on density waves. a, Bragg
signal corresponding to Sσ(q, ω) for different tempera-
tures. Each data-point is the average of at least 20 sep-
arate experimental shots. Solid lines are a fit to the
Bragg spectra using a free-fermion theory with fit pa-
rameter T (see Methods). b, Peak amplitude Sp of the
Bragg spectra as a function of T , where empty circles
correspond to a symmetric Bragg excitation, Sσ, while
filled circles represent the antisymmetric excitation, Sα.
The dark-gray dashed line is a fit to T , assuming an ex-
ponential dependence, signaling the loss of correlations
due to thermal fluctuations. Error bars represent stan-
dard error, obtained via bootstrapping (see Methods for
details).

“c”, respectively.

Representative Bragg spectra, corresponding to
several values of T , are shown in Fig. 2a. We deter-
mine T for these by fitting the measured Sc(q, ω) to
a free-fermion theory for which the density inhomo-
geneity is accounted for by the local density approxi-
mation, as in our previous work[12, 14]. We observe
an overall suppression of the excitation amplitude
with increasing T (Fig. 2b). This is indicative of the
loss of coherence, and therefore, correlations. The
measured peak amplitudes Sp are the same for both
modes, within uncertainty, and they follow an expo-
nential dependence on T , in agreement with a previ-
ous theoretical study of the role of temperature that
predicted exponential decay of correlations with in-
creasing T , as the system departs the SC regime[28].
While the CI regime has yet to be characterized, we
associate the decay in the Bragg response to the loss
of density-density correlations due to the prolifera-

Fig. 3. Suppression of spin-charge separation. Frequen-
cies at the peak amplitude of measured Bragg spectra
for symmetric (red triangles) and antisymmetric (blue
circles) excitations as a function of T . The correspond-
ing speed of sound vp = ωp/q is given by the right axis.
Error bars are the statistical standard errors of the ex-
tracted peak frequency obtained via a quadratic regres-
sion (see Methods). At sufficiently high T , only charge
waves propagate, as the loss of spin coherence suppresses
the separation of the collective density waves. Solid ver-
tical lines correspond to the boundaries of the thermal
hierarchy evaluated for N = 30 and as = 500 a0.

tion of holes, suppressing the coherent propagation
of either mode.

The atoms should respond only to a Bragg exci-
tation with a symmetric light shift in the SI regime,
since spin correlations are suppressed there[29, 32].
During the crossover between the SC and the SI
regimes the Luttinger liquid will be averaged over an
increasing number of spin configurations that have
regions of local spin-imbalance (see Fig. 1a). Due
to these regions, the Bragg pulse used to excite the
spin-mode no longer has a locally antisymmetric re-
sponse. Rather, with increasing T this Bragg pulse
progressively couples to the charge-mode as the sys-
tem crosses into the SI regime. We therefore label
the measured signals as Sσ and Sα for symmetric
and antisymmetric light shifts, instead of Sc and
Ss, with corresponding propagation speeds vσ and
vα. As T is increased, we observe a gradual sup-
pression of the separation between vσ and vα (Fig
3), which is indicative of the increasing charge-mode
character induced by the antisymmetric excitation
pulse. The extent of this thermal disruption is af-
fected both by the tube-to-tube occupancy variation
and by the density inhomogeneity within each tube,
as relatively low local density inevitably occurs near
the confinement edges of the waveguide.
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Fig. 4. Dispersion of incoherent density waves. 1/e2

axial width of out-coupled atoms, dp, following a Bragg
pulse and 150 µs time-of-flight expansion for symmetric
(red triangles) and antisymmetric (blue circles) excita-
tions as a function of T . The widths are the Gaussian fits
to the positive outcoupled signal at ωp[14]. Error bars
are standard errors determined by bootstrapping for at
least 20 independent images. The spin-density waves
show an increased width arising from the reduced life-
time of the SDW excitation caused by back-scattering.
The difference between the symmetric Sσ(q, ω) and an-
tisymmetric Sα(q, ω) excitations remains, even after the
system is fully thermal.

The excitation energy for each sector is given by
Es,c = ~nvs,c, where vs and vc are the propagation
speeds of each mode, and n is the 1D density. We
evaluate the propagation speeds for both modes by
using the Bethe ansatz[45]. We extract the density
at the center of each tube (and consequently the
Fermi velocity vF ) from in situ phase-contrast im-
ages of the atom cloud [12, 14] (see Methods). An
estimated upper bound for the crossover tempera-
tures is found by evaluating the thermal hierarchy
at the center of a single tube, located at r = 0,
where the maximum occupancy is N ' 30. The
resulting energy scales are Es ∼ kB × 630 nK and
Ec ∼ kB × 1330 nK, which are shown as solid lines
in Fig. 3. For T > 1000 nK, we find that vσ ' vα,
to within our uncertainty, indicating a full suppres-
sion of spin-charge separation. Our measurements
confirm that in the SI regime, the peak excitation
frequency and the high-energy tails of S(q, ω) for
each sector are identical to within their uncertainty
(see Supplementary Fig. 2). To our knowledge this
is the first experimental demonstration of thermal
disruption of spin-charge separation.

We further characterized the Bragg spectra as a
function of T by measuring the width of the out-
coupled atoms dp as a result of the Bragg perturba-
tion after time-of-flight (Fig. 4). We have previously
shown that dp for the spin-mode increases with inter-
action strength, indicating non-linear effects in the
spin-mode dispersion that are not present in charge
excitations. We showed that the non-linearity is re-

lated to the finite lifetime of the SDW excitation due
to back-scattering[14]. Remarkably, although both
excitations propagate at the same speed for a suffi-
ciently high temperature, we nonetheless observe a
difference in dp between the symmetric and antisym-
metric excitations, even after the system has become
fully thermal. Although mixing of the spin config-
urations suppresses spin-charge separation, we find,
nonetheless, that the spin sector is not fully decou-
pled at these elevated temperatures, as Bragg spec-
troscopy still distinguishes features associated with
the non-linear character of the spin sector. This is
perhaps surprising given the expectation of universal
spin physics in the SI regime, and suggests further
study of the effects of nonlinearity on the decay of
spin correlations is necessary[28].

In conclusion, we have characterized the tempera-
ture crossover between a coherent and an incoherent
Luttinger liquid, as evidenced by the exponential de-
cay of correlations as the system transitions into the
SI regime. We observe a full suppression of spin-
charge separation—one of the hallmarks of the stan-
dard TLL theory—clearly demonstrating the signa-
tures of a disrupted Luttinger liquid. Further work
using spin-sensitive imaging can focus on the mea-
surement of density-density correlations functions,
as well as exploring the anomalous exponents in the
decay of charge and spin correlations. Our measure-
ments can also be readily extended to a systematic
study of more exotic regimes of 1D fermions. A gas
with attractive interactions (a < 0) is predicted to
realize the Luther-Emery liquid phase[46], which ex-
hibits a gap only in the spin sector and is a potential
1D analog of a superconductor[47]. Another inter-
esting path of study would be the characterization of
a spin-imbalanced sample, where a quantum-critical
region is expected to appear at finite temperatures
for repulsive interactions[22], and new emergent liq-
uid and gas-like quantum phases near a quantum
phase transition could potentially be studied.
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[12] T. L. Yang, P. Grǐsins, Y. T. Chang, Z. H. Zhao,
C. Y. Shih, T. Giamarchi, and R. G. Hulet, Phys.
Rev. Lett. 121, 103001 (2018).

[13] J. Vijayan, P. Sompet, G. Salomon, J. Koepsell,
S. Hirthe, A. Bohrdt, F. Grusdt, I. Bloch, and
C. Gross, Science 367, 186 (2020).

[14] Senaratne, R. and Cavazos-Cavazos D., et al. Sci-
ence 376, 1305–1308 (2022).

[15] S.-I. Tomonaga, Prog. Theor. Phys. 5, 544 (1950).
[16] J. M. Luttinger, J. of Math. Phys. 4, 1154 (1963).
[17] F. D. M. Haldane, J. Phys. C 14, 2585 (1981).
[18] J. Voit, J. of Phys.: Cond. Matt. 5, 8305 (1993).
[19] T. Giamarchi, Quantum Physics in One Dimension

(Oxford University Press, Oxford, 2003).
[20] A. J. Schofield, Contemp. Phys. 40, 95 (1999).
[21] A. Imambekov, T. L. Schmidt, and L. I. Glazman,

Rev. Mod. Phys. 84, 1253 (2012).
[22] F. He, Y.-Z. Jiang, H.-Q. Lin, R. G. Hulet, H. Pu,

and X.-W. Guan, Phys. Rev. Lett. 125, 190401
(2020).

[23] A. Imambekov and L. I. Glazman, Science 323, 228
(2009).

[24] A. Vishwanath and D. Carpentier, Phys. Rev. Lett.
86, 676 (2001).

[25] S. Biswas, T. Mishra, S. Rao, and A. Kundu, Phys.
Rev. B 102, 155428 (2020).

[26] A. M. Chang, Rev. Mod. Phys. 75, 1449 (2003).
[27] G. A. Fiete, Rev. Mod. Phys. 79, 801 (2007).
[28] V. V. Cheianov and M. B. Zvonarev, Phys. Rev.

Lett. 92, 176401 (2004).
[29] K. A. Matveev, Phys. Rev. Lett. 92, 106801 (2004);

Phys. Rev. B 70, 245319 (2004).

[30] G. A. Fiete and L. Balents, Phys. Rev. Lett. 93,
226401 (2004).

[31] A. E. Feiguin and G. A. Fiete, Phys. Rev. B 81,
075108 (2010).

[32] P. Kakashvili and H. Johannesson, Phys. Rev. B 76,
085128 (2007).

[33] P. Kakashvili, S. G. Bhongale, H. Pu, and C. J.
Bolech, Phys. Rev. A 78, 041602 (2008).

[34] H. H. Jen and S.-K. Yip, Phys. Rev. A 95, 053631
(2017).

[35] J. Decamp, J. Jünemann, M. Albert, M. Rizzi,
A. Minguzzi, and P. Vignolo, Phys. Rev. A 94,
053614 (2016).

[36] O. M. Auslaender, H. Steinberg, A. Yacoby,
Y. Tserkovnyak, B. I. Halperin, K. W. Baldwin,
L. N. Pfeiffer, and K. W. West, Science 308, 88
(2005).

[37] H. Steinberg, O. Auslaender, A. Yacoby, J. Qian,
G. A. Fiete, Y. Tserkovnyak, B. Halperin, K. Bald-
win, L. N. Pfeiffer, and K. W. West, Phys. Rev. B
73, 113307 (2006).

[38] G. A. Fiete, K. Le Hur, and L. Balents, Phys. Rev.
B 72, 125416 (2005).

[39] R. A. Hart, P. M. Duarte, T.-L. Yang, X. Liu,
T. Paiva, E. Khatami, R. T. Scalettar, N. Trivedi,
D. A. Huse, and R. G. Hulet, Nature 519, 211
(2015).

[40] G. Zürn, T. Lompe, A. N. Wenz, S. Jochim, P. S.
Julienne, and J. M. Hutson, Phys. Rev. Lett. 110,
135301 (2013).

[41] J. Stenger, S. Inouye, A. P. Chikkatur, D. M.
Stamper-Kurn, D. E. Pritchard, and W. Ketterle,
Phys. Rev. Lett. 82, 4569 (1999).

[42] A. Brunello, F. Dalfovo, L. Pitaevskii, S. Stringari,
and F. Zambelli, Phys. Rev. A 64, 063614 (2001).

[43] S. Hoinka, M. Lingham, M. Delehaye, and C. J.
Vale, Phys. Rev. Lett. 109, 050403 (2012).

[44] D. Pines, Theory of quantum liquids: normal Fermi
Liquids (CRC Press, 2018).

[45] M. T. Batchelor, M. Bortz, X.-W. Guan, and
N. Oelkers, in Journal of Physics: Conference Se-
ries, Vol. 42 (IOP Publishing, 2006) p. 002.

[46] A. Luther and V. J. Emery, Phys. Rev. Lett. 33,
589 (1974).

[47] A. Seidel and D.-H. Lee, Phys. Rev. B 71, 045113
(2005).

[48] M. Olshanii, Phys. Rev. Lett. 81, 938 (1998).

mailto:randy@rice.edu
http://dx.doi.org/10.1103/PhysRevLett.92.176401
http://dx.doi.org/10.1103/PhysRevLett.92.176401
http://dx.doi.org/10.1103/PhysRevB.81.075108
http://dx.doi.org/10.1103/PhysRevB.81.075108


6

METHODS

Temperature control for different samples.
The final temperature T is determined by the evap-
orative cooling trajectory realized in a 1070 nm
crossed-beam dipole trap, followed by further evapo-
ration in a 3D harmonic trap produced by the inter-
section of three mutually-orthogonal focused trap-
ping beams of wavelength 1064 nm. We vary the
duration and final evaporation depth at each stage to
control T while maintaining an approximately con-
stant total atom number. The temperature has a
significant effect on the tube-to-tube number distri-
bution N(r). The central tube occupancy is high-
est for low T and it diminishes with increasing T .
We partially compensate these variations by intro-
ducing repulsive (532 nm) compensation laser beams
along the three lattice directions, which are ramped
on during the turn-on of the 3D optical lattice[39].
This enables us to adjust the degree of confinement
in the optical lattice so that N(r) is made approx-
imately independent of T . The spin-charge separa-
tion we report in Fig. 3 for the lowest T is smaller
in magnitude than in our previous report [14]. This
difference is a consequence of the lowest T being 500
nK in the present experiment, while T = 250 nK for
the experiment reported in Ref. 14.

Two-photon Bragg spectroscopy. This
method allows us to independently address the den-
sity waves in the spin and the charge sectors by
choosing the relative detuning between the spin
states and an excited state (see Supplementary Fig.
1). As T → 0, a symmetric light shift with respect
to both spin states excites only CDWs while an anti-
symmetric one only excites SDWs. The experimen-
tal conditions for probing and analysing the resulting
low-energy excitation spectra are the same as those
previously reported in Ref. 14. The Bragg pulse du-
ration is 200 µs and the atoms are imaged after 150
µs of time-of-flight. We adjust the angle between the
Bragg beams such that for both modes the Bragg
wave-vector is parallel to the tube axis and has a
magnitude |~q| = 1.47 µm−1, corresponding to 0.3
kF for the central tube. We calculate the Bragg sig-
nal by quantifying the number of atoms that receive
a momentum kick from the Bragg pulse as a func-
tion of ω. This Bragg signal is proportional to the
dynamic structure factor S(q, ω) [10, 12, 14, 42, 43].

Crossover hierarchy evaluation. The energy
scales for the charge and spin sectors can be approx-
imated as Eη = ~nvη (Ref. 27), where n is the 1D

density, vη is the propagation velocity of each mode,
and η = s,c correspond to either charge or spin sec-
tors, respectively. We express Eη as Eη(a,N), with
a being the s-wave scattering length and N the tube
occupancy. The density n(a,N) is calculated by us-
ing the local density approximation (LDA) [12, 14],
where we numerically solve the equation:

µ− 1

2
mω2

zx
2 =

~2π2

8m
[n(x)]

2
+
g(a)

2
[n(x)],

where µ is the chemical potential defined by
N =

∫
n(x)dx , m is the atomic mass, ωz is

the axial angular trapping frequency, and g(a) =
2~2

m

(
a
a2⊥

)
1

1−C(a/a⊥) is the interaction strength[48],

where C = |ξ(1/2)|/
√

2 ∼ 1.03 and a⊥ =
√

~/mω⊥
is the length scale of the transverse harmonic con-
finement for a radial angular trapping frequency ω⊥.
The propagation velocity for each mode vs,c can be
expressed as vη = vFβη, where vF is the Fermi veloc-

ity, explicitly given by vF =
√

~
mNωz. The factor βη

can be calculated exactly from the zero-temperature
Bethe ansatz[45], although a first order approxima-
tion can be given as

βη '
√

1± 2γ

π2
,

where the “+” sign corresponds to charge and the
“−” sign to spin, and γ is the Lieb-Liniger parame-
ter:

γ(a, n(a,N)) =
a

a2⊥n

1

1− C (a/a⊥)
.

Thus, we can express the energy scales as:

Eη(a,N) ' ~n(a,N)vF (N)

√
1± 2γ(a, n(a,N))

π2
.

For Fig. 1 we evaluated the density at the center of a
waveguide characterized by ω⊥ = 2π× 227 kHz and
ωz = 2π× 1.3 kHz, which corresponds to the quasi-
1D geometry created by a 2D optical lattice with
a depth of 15 Er. The energy hierarchy defines the
spin-coherent (SC), spin-incoherent (SI) and charge-
incoherent (CI) regimes:

SC kBT < Es < Ec

SI Es < kBT < Ec

CI Es < Ec < kBT.

We evaluate the boundaries for the SC-SI and SI-CI
regimes, shown with dashed lines in Fig. 1b, by the
conditions Es = kBT and Ec = kBT , respectively.
For our parameters, Es ∼ kB × 630 nK and Ec ∼
kB × 1330 nK.
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SUPPLEMENTARY MATERIALS

Supplementary Fig. 1. Symmetric and antisymmetric
excitations via Bragg spectroscopy. Partial energy-level
diagram of 6Li showing relevant transitions and laser
detunings of the Bragg pulses. We generate a sym-
metric light shift by symmetrically detuning the fre-
quency of the Bragg beams far (∆σ = 11 GHz) from
the 2S → 2P resonance. For an antisymmetric excita-
tion, the Bragg beams are detuned by ∆α = ±80 MHz
from the 2S → 3P resonance frequency.

Supplementary Fig. 2. Bragg spectra. Normalized
Bragg signals related to Sσ(q, ω) (red triangles) and
Sα(q, ω) (blue circles) excitations as a function of T .
Each data-point is the average of at least 20 separate
experimental shots. Solid lines are a fit to the Bragg
spectra using a free-fermion theory with fit parameter T ,
which is labeled on the upper right corner for each case
(see Methods). As T is increased, Sσ(q, ω) and Sα(q, ω)
become identical to within uncertainties. Error bars rep-
resent standard error, obtained via bootstrapping.
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