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We report the creation of quasi-1D excited matter-wave solitons, “breathers,” by quenching the strength
of the interactions in a Bose-Einstein condensate with attractive interactions. We characterize the resulting
breathing dynamics and quantify the effects of the aspect ratio of the confining potential, the strength of the
quench, and the proximity of the 1D–3D crossover for the two-soliton breather. Furthermore, we
demonstrate the complex dynamics of a three-soliton breather created by a stronger interaction quench. Our
experimental results, which compare well with numerical simulations, provide a pathway for utilizing
matter-wave breathers to explore quantum effects in large many-body systems.

DOI: 10.1103/PhysRevLett.125.183902

The nonlinear Schrödinger equation (NLSE) applies to a
wide variety of physical systems, such as small amplitude
waves in deep water, light waves propagating in optical
fiber, Langmuir waves in plasmas, and matter waves [1,2].
A fundamental solution to the NLSE in one dimension (1D)
for a self-focusing nonlinearity is a bright soliton, a
localized wave packet that maintains its shape and ampli-
tude while propagating. While the soliton is the ground
state, the NLSE also supports excited state solutions that
contain an integer number Ns of constituent solitons. These
solutions are generally supplemented by radiation that
reduces the wave amplitude. In the general case, each
constituent soliton is spatially separated from the others,
and they propagate with different velocities. A breather is a
special class of solutions in which Ns fundamental solitons
are overlapped, with zero relative velocity, and without
radiation. Unlike the case of the sine-Gordon equation, the
constituent solitons of a NLSE breather are not bound to
each other. In the absence of any binding energy, the
relative motion is in a state of neutral equilibrium [3,4]. The
density profile of a breather oscillates quasiperiodically
with frequencies determined by the differences in the
chemical potentials of the constituent solitons. The inter-
ference between the constituent solitons leads to complex
spatial patterns, giving the appearance of breathing.
Breathers were first observed in optical fiber [5,6], where

optical pulses with discrete intensity levels were found to
have a quasiperiodically varying pulse shape matching that
of the Ns ¼ 2, 3, and 4 breathers. An Ns-soliton breather
can be formed from a fundamental soliton by quenching the

strength of the nonlinearity by a factor of N2
s [4,7], thus,

creating an odd-norm-ratio breather [8] whose fundamental
solitons that form the breather have an amplitude ratio of
1∶3∶…∶2Ns − 1. If the quench factor deviates from N2

s ,
the breather becomes the closest Ns-soliton breather with a
different norm ratio after shedding radiation to properly
reduce the amplitude [4].
In the matter-wave context, bright solitons can be formed

in a Bose-Einstein condensate (BEC) confined to a quasi-
1D trap by tuning the s-wave scattering length as < 0,
corresponding to an attractive nonlinearity. Matter-wave
solitons, and their properties, have been the subject of
intense investigation in recent years. These properties
include the formation of solitons and soliton trains
[9–17], the collision of two solitons [18], interactions of
solitons with potential barriers [19–21], and soliton inter-
ferometry [22,23]. Solitons formed by a BEC of magnon
quasiparticles in 3He have also been recently observed [24].
Recently, a two-soliton breather was created by quenching
as by a factor close to 4, in combination with a rapid
relaxation of the axial confinement [25]. The soliton
dynamics of these experiments are well reproduced by
the mean-field Gross-Pitaevskii equation (GPE), which is a
NLSE that includes the confining potential of a trap.
Even though the solitons in a breather spatially overlap,

their binding energies are zero, leaving the relative motion
of the constituent solitons sensitive to perturbations. At the
same time, integrability of the NLSE protects the solitons
from exchanging matter with each other or losing it to
radiation. Within the framework of mean field theory,
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dissociation of the breather into constituent solitons may
occur due to narrow potential barriers [8,26,27]. Perhaps
most interestingly, beyond mean-field effects, due to
quantum interference, may result in splitting [28–31],
dissociation [32,33], relaxation [34,35], or the complete
lack of breathing following the quench [36]. In prior
theoretical work, we evaluated the affect of quantum
fluctuations on the relative velocity of the two components
of a two-soliton breather using both the exact Bethe-ansatz
method, appropriate for small number of atomsN [32], and,
in the limit of large N, the Bogoliubov approach [33]. We
found that quantum fluctuations can produce the macro-
effect of breather dissociation over a large range of N, thus
providing the motivation of the present study to create and
characterize matter-wave breathers.
In this Letter, we report the creation and characterization

of a two-soliton breather in a BEC of 7Li atoms, and for the
first time, the experimental creation of a three-soliton
breather in a BEC. We systematically study the breathing
frequency as a function of deviations from a truly 1D
system, the strength of the nonlinearity, and the quench
ratio, and compare with 1D GPE simulations. We observe
the characteristic dynamics of the three-soliton breather,
including density splitting and recombination, using min-
imally destructive sequential imaging.
Our method for preparing an ultracold 7Li gas has been

described previously [37,38]. The atoms are optically
pumped into the jf ¼ 1; mF ¼ 1i state, where the s-wave
scattering length a can be controlled by a broad Feshbach
resonance with a zero crossing near 544 G [39]. We
describe our method for calibrating aðBÞ in [40]. The
atoms are confined in a cylindrically symmetric, cigar-
shaped potential formed by a single-beam optical dipole
trap with a 1=e2 Gaussian radius of 44 μm. In combination
with axial magnetic curvature, the overall harmonic
frequency along the axial (z) direction, ωz, is tunable
between ð2πÞ1.12 and ð2πÞ11.50 Hz. The radial trap
frequency is ωr ¼ ð2πÞ297 Hz, corresponding to an
aspect ratio, λ ¼ ωr=ωz, that is between 26 and 265.
First, we create a BEC by direct evaporative cooling in the
optical dipole trap with ωz ¼ ð2πÞ11.50 Hz and with a
tuned to 140 a0, where a0 is the Bohr radius. Following
evaporation, we ramp a from 140 a0 to 0.1 a0 in 1 s.
During this stage, ωz is kept large in order to limit the axial
extent of the repulsive BEC, thus, ensuring that only a
single soliton is formed when the interaction is changed
from repulsive to attractive. Next, a is ramped from 0.1 a0
to ai < 0 in 1 s, while simultaneously reducing ωz. This
creates a single soliton with approximately N ¼ 5 × 104

atoms, with minimal excitations. The scattering length is
then quenched from ai to af ¼ A2ai in 1 ms, where
jafj > jaij, and A2 is the quench ratio. We use polarization
phase-contrast imaging (PPCI) [38,45] to take in situ
images of the column density after a variable hold time th
following the quench.

Figure 1 shows the breathing dynamics of a two-soliton
breather. After the quench, the wave function contracts
toward the center and forms a large density peak at the half
period, followed by expansion back to the initial profile,
thus, completing a full breathing period, as shown in
Fig. 1(a). The axial density nðzÞ is obtained by integrating
the column density along the remaining radial coordinate
perpendicular to the imaging axis. The central density n0 of
the breather is measured by fitting the axial density to a
Gaussian function nðzÞ ¼ n0 exp ½−ðz=lzÞ2�, where n0 and
the Gaussian radius lz are the fitting parameters. Although
nðzÞ is not strictly a Gaussian, the n0 found in this way is a
good approximation of its true value.
To determine the frequency of anNs-soliton breather, the

central density n0 is measured as a function of th, and is fit
to the corresponding analytical solution of the NLSE for
two-soliton breathers, which for A2 ¼ 4, is [4]

n0ðthÞ ¼
α

5þ 3 cos ðωBth þ ϕÞ ; ð1Þ

where the breather frequency ωB, phase ϕ, and overall
amplitude α are fitted parameters. The solid line in Fig. 1(b)
shows Eq. (1) using the extracted parameters.

(a)

(b)

FIG. 1. (a) Experimental images of a two-soliton breather. The
values of the parameters are ai ¼ −0.15ð2Þa0, af ¼ −0.54ð3Þa0,
N ¼ 5.4ð4Þ × 104, Nc ¼ 5.2ð3Þ × 104, ωr ¼ ð2πÞ297ð1Þ Hz,
and ωz ¼ ð2πÞ1.12ð2Þ Hz, so that N=Nc ¼ 1.0ð1Þ, λ ¼ 265ð5Þ,
and A2 ¼ 3.6ð6Þ. Uncertainties are discussed in Ref. [40]. Each
image is a separate realization of the experiment, and the center of
the image is adjusted to remove shot-to-shot variation in the
center of mass. The color scale represents the column density in
this image, as well as in Figs. 2(c) and 3(a). (b) Each data point is
the result of fitting the axial density nðzÞ to find its central density
n0 for each of five images, and averaging the result. The solid line
is a fit to Eq. (1), with fitting parameters ωB ¼ ð2πÞ39.4ð6Þ Hz,
and ϕ ¼ ð2πÞ0.17ð1Þ. Error bars in n0 are the standard error of
the mean. The uncertainty in ωB is the fitting uncertainty.
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The breather, as described by the NLSE, is a purely 1D
object, while the experiment is in quasi-1D due to the fact
that the ratio of the chemical potential to the radial trap
frequency is nonzero, and as a result, the transverse wave
function profile cannot be factored out. The validity of the
exact NLSE breather solution also requires the absence of
any axial trapping. Both the proximity to 3D and the weak
axial confinement break integrability. As a consequence of
being in quasi-1D, a BEC with attractive interactions is
unstable to collapse once the atom number exceeds a
critical value Nc. For an elongated cigar-shaped harmonic
confinement, Nc ¼ 0.67ar=jafj, where ar ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mωr

p ¼
2.2 μm is the radial harmonic oscillator length [46]. The
collapse threshold for the breather is predicted to be
different from that of the ground state soliton [47]. We
explore the 3D and axial confinement effects by measuring
the dependence of ωB on the trap aspect ratio λ and,
separately, on N=Nc.
The measured ωB as a function of λ is plotted in

Fig. 2(a). For this data, N=Nc ¼ 1.0, ai ¼ −0.15a0, and
af ¼ −0.54a0, giving A2 ¼ 3.6. We find that ωB mono-
tonically decreases as λ increases from 26 to 265. We
compare the measured results with the 1D GPE,

iℏ∂tψ ¼ −
ℏ2

2m
∂2
zψ þ 1

2
mω2

zz2ψ þ g1DNjψ j2ψ ; ð2Þ

where g1D ¼ 2ℏωra is the nonlinear coupling constant
[48]. The ground state at a ¼ ai is used as the initial wave
function, and Eq. (2) is then numerically integrated with
a ¼ af up to a few breathing periods. The resulting ωB,
using the measured parameters, is shown by the dashed red
line in Fig. 2(a). The shaded region in Fig. 2(a) represents
the range of solutions of the 1D GPE that includes the
measured uncertainty in N=Nc [40]. The measured
frequency is consistent with the simulation, to within the
measurement uncertainties. We also calculated ωB using
the 3D GPE for several values of the parameters and found
excellent agreement with the 1D GPE for N=Nc ≲ 0.7. The
3D and 1D GPE differ at larger N=Nc due to the proximity
to the collapse threshold, which signals the breakdown of
one dimensionality, and eventually, of the GPE itself.
Further consideration of the limits of the applicability of
the 1D and 3D mean-field approximations is warranted,
particularly in the case of excited states [49,50], such as
breathers.
As mentioned above, the breather strictly exists only in

1D on a flat background, thus, requiring ωB=ωz ≫ 1. The
experiment demonstrates that, for λ ¼ 265, ωz is signifi-
cantly less than ωB, ensuring that the breather dynamics is,
indeed, dominated by the nonlinear interactions, rather than
the trap.
Figure 2(b) shows the measurement of ωB vs N=Nc for

λ ¼ 265 and A2 ¼ 3.6, corresponding to the conditions to
excite a two-soliton breather. The analytic result given by
the 1D NLSE for A2 ¼ 4 [7],

ωB;1D ¼ N2a2f
4a2r

ωr ¼ 0.11ðN=NcÞ2ωr; ð3Þ

is shown by the solid green curve in Fig. 2(b). The results of
the 1D GPE simulation is again shown by the dashed red
curve. The experimental data follows the quadratic trend
given by Eq. (3).
For N=Nc ≥ 1.2ð1Þ, we observe collapse of the two-

soliton breather for th ≳ 4 ms following the quench, at the
time when the density grows rapidly. An example is shown
in Fig. 2(c). The collapse threshold for the fundamental
soliton occurs at N=Nc ¼ 1.0, which has been observed in
the in-phase collisions of two fundamental solitons [18].
A numerical simulation based on the 3D GPE [47] provides
an estimate of the collapse threshold for the two-soliton
breather, which is found to be N=Nc ¼ 1.1, for the
experimental parameters of Fig. 2(b). Additionally, a
factorization ansatz in the mean-field limit [51] provides
an analytical estimate for the collapse location to be
N=Nc > N2

s=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N2

s − 1
p

, which gives 1.5 for Ns ¼ 2 [40].
The NLSE can predict the number of atoms in each of

the two fundamental solitons when 1.5 < A < 2.5.

(a) (b)

(c) (d)

FIG. 2. Two-soliton breather frequency dependence on para-
meters. The parameters are as shown in the caption to Fig. 1,
unless specified otherwise. The red dashed lines in (a), (b), and
(d) show the solutions of the 1D GPE simulation, and the red
shaded areas show the uncertainty range in ωB due to the
uncertainty in the measured N=Nc. The uncertainties for (a), (b),
and (d) are discussed in Ref. [40]. (a) ωB vs λ. Here, ωr is fixed
while ωz is varied. The location of the Feshbach resonance zero-
crossing field was varied to within its uncertainty (0.2 G) to
obtain the best fit of GPE solutions to the data [40]. (b) ωB vs
N=Nc. The solid green line is the solution to the 1D NLSE
[Eq. (3)]. The vertical dashed line indicates the value of N=Nc
above which collapse is observed. (c) Images showing
collapse for th between 4 and 6 ms after the quench and for
N=Nc ¼ 1.2ð1Þ. This sequence of images is taken from a single
experimental realization. (d) ωB vs A2. Here, af is fixed while ai
is varied. The solid green line is the solution of the 1D NLSE
[Eq. (4)].

PHYSICAL REVIEW LETTERS 125, 183902 (2020)

183902-3



They are found to be N1 ¼ ð2A − 1ÞN=A2 and N2 ¼
ð2A − 3ÞN=A2. When A ≠ 2, the number of atoms in the
two solitons, N1 þ N2, is less than the total number of
atoms N, with the remaining atoms radiated away [4].
In principle, a measurement of N vs A2 could reveal the
efficiency of the quench, but the radiated loss fraction is
predicted to be less than N=10 and was not resolved in our
experiment.
A change in A2 modifies the chemical potentials of the

constituent solitons and, therefore, the breather frequency.
The measured ωB vs the quench ratio A2 is shown in
Fig. 2(d), where the dashed red line and shaded region
again correspond to the 1D GPE simulation, including
uncertainties in N=Nc. The dependence of ωB on A for the
two-soliton breather with no axial potential can be evalu-
ated as the soliton chemical potential difference,

ωB;1DðAÞ ¼
16ðA − 1Þ

A4
ωB;1DðA ¼ 2Þ; ð4Þ

which is shown by the solid green curve in Fig. 2(d).
We also excited a three-soliton breather by quenching by

a factor of A2 ¼ 7.1. The results are given in Fig. 3(a),
where a series of sequential images using PPCI are
displayed for a single realization of the experiment. The
Ns ¼ 3 breather displays more complex dynamics than
does the Ns ¼ 2 breather as it contains more than one
frequency component. A superposition of two solitons can
exhibit shape oscillations, but it cannot undergo a transition
between single- and double-peak shapes, which requires a
superposition of no fewer than three solitons. The breather
frequencies are the differences between the chemical
potentials, μ, of the constituent fundamental solitons.
Since μ ∝ ðN=NcÞ2, and the number ratio of the Ns ¼ 3
breather is 1∶3∶5 [4], the ratio of μ values is 1∶9∶25, giving
frequency ratios of 8∶16∶24. Identifying the smallest
frequency as ωB, we have the three frequencies: ωB,
2ωB, and 3ωB, appropriate for A2 ¼ 9.

To analyze the three-soliton breather quantitatively, we
fit the integrated 1D density for each th to either a single- or
double-Gaussian function depending on whether the cen-
tral density is a local maximum or minimum, respectively.
We extracted the central density n0ðthÞ from the fit, and
plotted it against th, as shown by the discrete points in
Fig. 3(b). For three-soliton breathers, n0ðthÞ is fitted to the
exact three-soliton breather solution of the NLSE for A2 ¼
9 obtained from the general theory [4,52],

n0ðthÞ ¼ α

�
1þ 32½3þ 5 cos ðωBth þ ϕÞ� sin2 1

2
ðωBth þ ϕÞ

55þ 18 cos ðωBth þ ϕÞ þ 45 cos 2ðωBth þ ϕÞ þ 10 cos 3ðωBth þ ϕÞ
�
; ð5Þ

with fitting parameters ωB, ϕ, and α. The result is ωB ¼
ð2πÞ10.6ð1Þ Hz and ϕ ¼ ð2πÞ0.11ð1Þ. The solid line in
Fig. 3(b) is Eq. (5) using these values. Equation (5) pertains
to the specific case of A2 ¼ 9, where the quench produces a
pure three-soliton breather with no radiation. We find that
Eq. (5) is a good approximation to the central density of a
three-soliton breather even when A2 is close to, but not
exactly equal to 9. This result is consistent with exact
theory [4] in which a breather composed of three funda-
mental solitons is created for 6.25 < A2 < 12.25.

In conclusion, we have observed the two- and three-
soliton breathers in a BEC by quenching the atomic
interaction using a zero crossing of a Feshbach resonance
in 7Li. We have shown that, by reducing the axial confine-
ment, the breather frequency approaches the 1D limit and is
well described by the 1D NLSE. Like fundamental bright
matter-wave solitons, higher-order solitons undergo col-
lapse for a nonlinearity that is too strong. Collapse arises
when the soliton is brought close to the 3D boundary, but
notably, the collapse threshold for breathers is higher than it

(a)

(b)

FIG. 3. (a) Experimental images of a three-soliton breather
produced by A2 ¼ 7ð2Þ. A series of phase-contrast images were
taken at 5 ms intervals after the quench in a single realization of
the experiment. The center of each image is adjusted to
remove the center-of-mass variation between the images.
Parameters for this data are λ ¼ 265ð5Þ, ai ¼ −0.08ð2Þa0, and
af ¼ −0.57ð3Þa0, and for the initial image (th ¼ 0),
N=Nc ¼ 1.0ð1Þ. Uncertainties are discussed in Ref. [40]. In each
subsequent image, N is reduced by 3% due to spontaneous
emission by the probe. (b) The closed circles are n0 extracted
from the column density images shown in (a). The solid line is a
fit of the data to Eq. (5), giving ωB ¼ ð2πÞ10.6ð2Þ Hz and
ϕ ¼ ð2πÞ0.11ð1Þ.
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is for fundamental solitons with the same total particle
number.
In the strict 1D limit, breathers are exact solutions of the

NLSE. Breathers are superficially similar to time crystals
[53–56], although breathers are not a consequence of a
spontaneously broken symmetry. Breathers are particularly
sensitive to beyond-mean-field quantum effects, which,
according to Ref. [32], lead to formation of a quantum
superposition of two fundamental solitons with different
relative velocities and numbers of atoms after the quench.
Spontaneous dissociation of the breather is predicted to
occur after multiple breathing periods [32,33]. In our
experiment, the two-soliton breather survives for at least
two breathing periods. An extension of this work is to
measure the breathing duration, which determines whether
spontaneous dissociation can be observed. Preliminary
experiments indicate that noise in the center-of-mass
coordinates poses a technical limit to the breather lifetime.
Further progress will require better stability of the magnetic
field and laser pointing to mitigate center-of-mass fluctua-
tions and drift.
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