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Evolution of atomic motion in an intense standing wave
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We have investigated the effect of the dipole force and its fluctuation on the motion of Li atoms in an
intense, one-dimensional, near-resonant standing light wave. The duration of the interaction of the
atoms with the standing wave was varied from several tens of spontaneous-emission lifetimes to several
hundreds. For a standing-wave frequency blue detuned from resonance, diffusive heating can dominate
the time-averaged dissipative dipole force so that there is no steady-state momentum distribution. How-
ever, for sufficiently large blue detunings, the rate of diffusion is so slow that the resulting distribution
approaches a quasisteady state. For red detunings, the diffusion is balanced with the force and a true
steady state is achieved. We apply a Monte Carlo method based on the density-matrix equations in the
dressed-state representation to simulate the atomic motion. The dynamics of atom channeling is dis-

cussed.

PACS number(s): 32.80.Pj, 42.50.Vk

I. INTRODUCTION

Laser cooling of ‘“two-level” atoms in the low-light-
intensity regime known as Doppler cooling, is now well
understood [1,2]. In this case, atoms move in light waves
whose frequencies are tuned below the resonance frequen-
cy of an atomic transition and whose intensities are less
than or near the saturation intensity of the transition.
Theory accurately describes the dynamics of atomic
motion for these conditions, and ultimate cooling temper-
atures can be precisely predicted [1,2]. In the case of a
two-level atom moving in an intense standing wave, for
which the light intensity is much greater than the satura-
tion intensity of the cooling transition, the force on the
atom is dominated by several fundamentally different
physical mechanisms depending on the velocity of the
atom and the intensity of the field [3]. Figure 1 shows the
results of a calculation of the force on the atom averaged
over the time for an atom to travel one optical wave-
length, as a function of atomic momentum. It is as-
sumed that the atom interacts with the field for a long
time compared to the spontaneous emission lifetime of
the excited state. This calculation employs a continued-
fraction method to obtain the steady-state solution of the
optical Bloch equations [4,5]. The parameters for the re-
sults shown in Fig. 1 are for an on-resonance Rabi fre-
quency Q,=50y and a detuning A=+ 5y, where #Q, is
the interaction energy of the atom with the field at an an-
tinode, y is the spontaneous decay rate of the excited
state, and A=w; —w, (@, is the laser frequency and w, is
the atomic resonance frequency). The force on a slowly
moving atom is due to the interaction of the induced
atomic dipole moment with the spatial gradient of the
field [3—7]. This “dipole force” is negative (i.e., cooling)
for blue detuning (i.e., A>0), and for atomic momentum
smaller than a “critical momentum” p_, as shown in Fig.
1. For the parameters used for Fig. 1, p,=25%k. The
structure appearing at atomic momenta p >p_ is due to
velocity-resonant, multiphoton ‘‘doppleron” resonances
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[8,9]. The doppleron resonances can be thought of as
multiphoton Doppler cooling events involving 2n +1
photons (n =0,1,2,...). The force due to the dopple-
rons is heating for blue detuning.

Since the dipole force does not saturate at high intensi-
ty, it is potentially more efficient for slowing atoms than
Doppler cooling, which does saturate [10—13]. However,
the dipole force can have large fluctuations [3,5-7].
These fluctuations, which lead to momentum diffusion,
are predominately caused by the randomness in the direc-
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FIG. 1. The time-averaged force on an atom in a standing
wave as a function of the momentum of the atom calculated by
the continued-fraction method. The Rabi frequency is
Q,=50y, and the detuning of the standing-wave frequency from
resonance is A=+5y, where v is the radiative-decay lifetime.
The force is given in units of the maximum of the one-photon
Doppler force #ky /2, and the momentum in units of the pho-
ton momentum #k. In this case, the dipole force is negative
(i.e., cooling) for blue detuning (i.e., A>0), and for atomic
momentum smaller than a “critical momentum” p, (25#%k). The
structure appearing at momenta higher than p. is due to the
velocity-resonant, multiphoton *“doppleron” resonances.
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tion of momentum recoil from stimulated transitions for
a high-intensity standing wave. An atom can absorb a
photon from either counterpropagating traveling-wave
component of the standing wave and likewise, can be
stimulated to emit a photon by either wave. As a result,
the atom will random walk in momentum space, similar
to the Brownian motion of a particle which random
walks in real space as the result of collisions with sur-
rounding particles. Spontaneous emission of photons in
random directions can also cause the atomic momentum
to fluctuate. However, the dominant fluctuation mecha-
nism in an intense standing wave is due to stimulated
processes since the stimulated transition rate is propor-
tional to Q3/y, which can be much greater than y. Like
the time-averaged force, the rate of the diffusion due to
stimulated processes does not saturate at high intensity.
The ultimate cooling limit, where it exists, is determined
by the balance of the time-averaged force with diffusion.

The subject of atomic motion in an intense standing
wave has been investigated for various interaction times
and laser parameter regimes [14]. Pritchard and associ-
ates, in a series of publications, studied the diffractive re-
gime for which the interaction time ¢ <<t (r=7y 1) [15],
and the transition to the diffusive regime for which ¢ ~7
[16]. Arimondo, Lew, and Oka observed the diffusive
spreading of the atomic velocity distribution for longer
interaction times ¢ >>7 [17]. Localization of atoms in the
optical potential wells of a standing wave was observed
[18] and recently exploited to cool atoms adiabatically
[19].

Various theoretical methods have been used to describe
the evolution of atomic motion for ¢ >>7. One of the first
of these methods used the Fokker-Planck equation (FPE)
for the Wigner distribution [2]. However, since the FPE
treats the motion of the atom classically it is not valid for
p ~#k (photon momentum). In addition, the usual ap-
proach is to average over the spatial variation of the
atom’s kinetic energy in the standing wave, so atom
channeling (see Sec. IV) is not accounted for. A dressed-
state Monte Carlo method, similar to that used in this pa-
per, was developed by Dalibard et al., which is appropri-
ate for p <p, [20]. Although this method also treats the
atomic motion classically, it accounts for atom channel-
ing and, as will be shown below, this method accurately
models the atomic motional dynamics in a regime where
the FPE approach fails. The “momentum family” ap-
proach developed by Castin, Wallis, and Dalibard is a
fully-quantum-mechanical theory, and has been em-
ployed to successfully explain “Sisyphus” sub-Doppler
cooling [21]. Unfortunately, this approach is not compu-
tationally feasible for the high laser intensity (Qy>>7y)
and small laser detuning (A <<{);) regime since an ex-
tremely large number of momentum families are
coherently coupled in this case. However, the Monte
Carlo wave-function (MCWF) approach recently
developed by Dalibard, Castin, and Mglmer and by Dum,
Zoller, and Ritsch is likely to be a very effective method
for the high-intensity, fully-quantum-mechanical problem
[22]. The main advantage of the MCWF method is that
the number of coupled equations is of order N in this
wave-function description, while it is of order N 2 for the
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density-matrix-based momentum family method. For a
typical situation discussed in this paper, Q,=50y and
A <<y, 10° first-order differential equations are coupled
in the momentum family approach, while the MCWF
method requires only (10°)!/2~ 300 coupled equations.

In this paper, we present experimental results and
Monte Carlo simulations of the evolution of atomic
motion in an intense, one-dimensional standing wave for
the relatively poorly investigated regime corresponding
to interaction times ¢>>7 and for atomic momenta
p ~p.. The paper is organized as follows. Section II de-
scribes the Monte Carlo method, based on the density-
matrix equations in the dressed-state basis. In Sec. III,
the experiment is described and the experimental data are
compared with the Monte Carlo results. In Sec. IV, the
initial heating due to the sudden application of the stand-
ing wave is discussed, the dynamics of channeling is stud-
ied, and the results of calculations using the Fokker-
Planck equation are compared with the data.

II. MONTE CARLO METHOD
IN THE DRESSED-STATE BASIS

For an atom in a one-dimensional, single-mode stand-
ing light wave, the total Hamiltonian of the atom plus
field is

2
H=2_ +H, +hoa'a+V, (1)
2M
where p?/2M is the kinetic energy of the atom, H
represents the internal atomic Hamiltonian, thaTa is
the energy of the quantized radiation field (@' and @ are
the creation and destruction operators, respectively), and
V=—d-(€.a +€Z&*) is the atom-field interaction energy
in the rotating-wave approximation, where d is the elec-
tric dipole moment of the atom. The quantized electric
field is €, =iE,sinkz€/n'/?, where E, is the maximum
field strength of one traveling-wave component, k is the
wave vector which is along the z axis, and » is the num-
ber of photons in the mode with polarization €.

By diagonalizing H in the representation
{le;n),lg,n +1)}, where |e,n) represents the state in
which the atom is in the excited state with n photons in
the radiation field, and |g,n +1) represents the state in
which the atom is in the ground state with » + 1 photons,
the eigenenergies are obtained [7]

2
_D _#A | AQ
E,, (z) 2M+(n+1)ﬁwL = —+———-2 , o
2
_D _HA  7Q
E,, (z) 2M+(n+1)ﬁ(uL - T,

where Q=Q(z)=[Q3sin’kz+ A?]!/2. Treating the atom-
ic motion classically, the corresponding eigenvectors
(dressed states) are [7]

[1,n)=e!™* cosBle,n ) +e " Hsinb|g,n +1) ,

12,n)=—e!"*sinble,n ) +e " cosBlg,n +1) ,

(3)

where
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A ) Qgsinkz states are not exact eigenstates for a moving atom, the

cos26=— o sin26= —a atom will be in a superposition of both dressed states. At
each time step 71—+ At, the spontaneous decay proba-

Q, is the resonant Rabi frequency defined as  bility from the superposition state to each dressed state is
Qy=—2d,,-E,é/# with d,,=(eld|g). The dressed calculated as the product of the decay rate and At. If the

states are the eigenstates in the absence of spontaneous
emission and for atomic velocity sufficiently small that
nonadiabatic transitions between dressed states can be ig-
nored. Neglecting spontaneous emission, the density-
matrix equations in the dressed-state basis for an atom
moving with velocity v along the z axis are

d
—EP;—I=UV6(p12+p21) ’
d 4)
P .
dtxz =—iQp;+vVo(py—pu),
with
kAQcoskz
Vo=——""75—,
2Q

where p;;=(inlpljn) (i,j=1,2), p;;+pp=1, and
p21=p%. The force on the atom is given by [7]

Q
f(zo)=—(VV) zﬁvT(Pzz—Pll)_ﬁQVO(P12+P21) )

(5)
with
_k Q3sin2kz

vQ 20

In the dressed-state picture, momentum diffusion due
to stimulated processes is related to the fluctuation of the
dipole force, which originates from spontaneous emission
[7,16]. An atom in one dressed state can spontaneously
decay to another dressed state, causing the force on the
atom to change discontinuously in time. In between two
spontaneous-emission events, the force on the atom
changes continuously in time, and there is no force fluc-
tuation. The accumulated effect of the fluctuating force
on the atomic motion will lead to momentum diffusion.
However, from a microscopic perspective each stimulat-
ed or spontaneous transition leads to momentum recoil,
which can contribute to momentum diffusion. Therefore,
treating diffusion in the dressed-state picture is an ap-
proximation, which is only valid for time scales much
larger than 7. This average over the quantum unit #k of
momentum exchange between the atom and field is con-
sistent with the treatment of diffusion given in Refs. [6]
and [7]. The momentum diffusion due to spontaneous
emission is much smaller than that due to the fluctua-
tions of the dipole force for a high-intensity field and are
ignored in this paper.

A Monte Carlo method can be used to simulate
momentum diffusion in the dressed-atom picture. Con-
sider an atom in a dressed state initially moving with ve-
locity v. In between two spontaneous emissions, the
density-matrix elements are given by the time integration
of Eq. (4), and the atomic motion is determined by the in-
stantaneous force given by Eq. (5). Since the dressed

superposition is given by |¢)=c,|1,n)+c,|2,n), then
the corresponding decay rates y, and ¥, from |¢) to the
lower manifold dressed states [1,n —1) and [2,n —1) are
determined by the matrix elements of the atomic dipole
moment (1,n —1|d|¢)=id,,sinb(c,cos6—c,sinf) and
(2,n —1]d|¢) =id,,cos6(c cosd—c,sind) using Eq. (3):

y1=7 sin%@|c; cos@—c,sinf|?

=y sin®0[p;; c0s’0—(p;,+p,;) cosOsinb+p,,sin26] ,
(6)

¥2=7 c0s°0[py, cos’0—(p;,+p,;) cosOsinf+p,,sin?6] .

Two pseudorandom numbers are generated by a comput-
er to determine if a decay to state 1 or 2 happens during
the time Az. If a decay occurs, the initial conditions are
reset according to the state the atom decays to. The
momentum of the atom can be thus obtained for any in-
teraction time. After many independent simulations, cor-
responding to many atoms, the desired momentum distri-
bution is produced, with some statistical uncertainty.

As a check, the Monte Carlo method can be used to
calculate the time-averaged force on an atom which can
be compared with that obtained by the numerically exact
continued-fraction method [4,5]. This comparison is
made in Fig. 2 for Q,=50y and A=+15y. For the
Monte Carlo calculation, the instantaneous force on an
atom moving with a fixed momentum is averaged over
many wavelengths and many spontaneous emissions.
These two calculations agree reasonably well for |p| < Pe-
This Monte Carlo method is similar to a previously pub-
lished method [20], except that in the expression for
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FIG. 2. Comparison of the average force on an atom in a
standing wave vs the atom’s momentum using the Monte Carlo
method (bold curve) and the continued-fraction method (lighter
curve). The Rabi frequency is ,=50y, and the detuning is
A= +15y. The two calculations agree reasonably well up to
the critical momentum p,.
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dp,,/dt in Eq. (4) we include a velocity-dependent term
that allows for the development of coherence between the
dressed states due to the atomic velocity. This added
term increases the velocity range over which the calcula-
tion is applicable since it accounts for the velocity-
resonant, nonadiabatic transitions, which give rise to the
dopplerons [23]. In particular, the fact that the force
changes sign at p, is correctly modeled.

The discrepancy between the two calculations shown in
Fig. 2 for large p is systematic. The only effect of spon-
taneous emission in our Monte Carlo simulations is to
project the atom onto dressed state 1 or 2. However,
spontaneous emission will damp the excited-state popula-
tion between spontaneous emission events [22], so that
our treatment is exact only when the dressed states are
exact eigenstates of the Hamiltonian that includes the in-
teraction of the atom with the vacuum field. The
dressed-state Monte Carlo method is best for slowly mov-
ing atoms in an intense, near-resonant standing wave,
since the stimulated transition rates are high and the
dressed states are a good approximation to the true eigen-
states. At momenta corresponding to doppleron reso-
nances, the rate for stimulated multiphoton Raman tran-
sitions can be much higher than y, so that there is rela-
tively better agreement at these momenta and poorer
agreement at large p between doppleron resonances.

III. EXPERIMENT

A. Experimental setup

A schematic of the experimental setup is shown in Fig.
3. An oven heated to ~570°C produces a beam of Li
atoms directed along the x axis. The atomic beam is in-
tersected at 90° by a standing wave (along the z axis)
which is formed by retroreflecting the output from a fre-

PMT
UHV Chamber

Laser
Diode

FIG. 3. Schematic diagram of the apparatus. A thermal
beam of Li atoms (along the x axis) is intersected at 90° by an in-
tense standing wave (along the z axis), whose frequency is tuned
near the 2s,,,,F =2<2p;,,,F =3 resonance frequency of the
’Li atom (671-nm wavelength). A small fraction of the laser
beam is shifted with an acousto-optic modulator (AOM) to opti-
cally pump atoms out of F =1 ground state. The laser beam is
expanded along the x axis by six prisms and circularly polarized
by a quarter-wave plate (A/4). The transverse momenta of the
atoms are probed downstream of the interaction region using a
weak, focused beam from a diode laser. Fluorescence from the
atoms is detected by a photomultiplier tube (PMT).

Prisms

quency stabilized cw ring dye laser. The laser is tuned
near the 25, ,,F =2<2p; ,,F =3 resonance frequency of
the "Li atom (671 nm wavelength). An effective two-state
cycling system is realized using a quarter-wave plate to
circularly polarize the standing wave so that atoms in the
F=2,mp=2 ground state can only be excited to the
F=3,mp=3 excited state. Atoms not initially in the
F=2,mp=2 ground state will be optically pumped ei-
ther into this state from which they can participate in the
two-state cycling process, or into the F =1 ground-state
hyperfine level. The laser beam is collimated by a tele-
scope, and expanded along the x axis by six prisms to in-
crease the interaction time with the atoms. The x-axis
Gaussian beam waist (e ~2 point of the maximum intensi-
ty) is 11.2 mm while the y-axis beam waist is 0.73 mm.
The laser output power is 510 mW, giving a peak intensi-
ty in the standing wave of 16 W/cm?. The saturation in-
tensity (i.e., Qy=7v) of the F=2,mp=2«F =3,my=3
transition using circularly polarized light is 5.1 mW/cm?,
yielding a peak on-resonance Rabi frequency Q,=56y.
The central part of laser beam can be apertured along the
x axis to different lengths corresponding to different in-
teraction times as atoms pass through the laser beam.
The maximum variation of (), over the unapertured part
of the beam is 25%. The laser frequency is offset-locked
using saturated absorption spectroscopy in a heat pipe
from the 2s,,,,F =2<2p,,,,F =3 resonance frequency
of the "Li atom, so that the detuning is accurately deter-
mined. A small fraction of the main beam is frequency
shifted with an acousto-optic modulator (AOM), in order
to pump atoms out of the F=1 state (ground-state
hyperfine splitting of 803 MHz). This AOM beam is
aligned nearly collinear to the main beam. The AOM
beam power is 15 mW with a beam waist approximately
equal to that of the main beam. The interaction of the
atoms with the standing wave defines the quantization
axis, since this interaction is stronger than that due to
any other field, including the Earth’s magnetic field. To
further eliminate the background magnetic field, a high-u
metal tube is placed around the interaction region, col-
linear with the standing-wave axis.

The effect of the standing wave on the transverse veloc-
ities of the atoms in the beam is probed downstream of
the interaction region using a weak, focused beam from a
diode laser. The probe beam is parallel to the x-y plane
and intersects the atomic beam nearly orthogonally, at an
angle of ~87° relative to the atomic beam axis. The
probe laser frequency is offset-locked from the
2512, F=22p;,,,F =3 resonance frequency by 110
MHz, so the probe will preferentially excite atoms with a
longitudinal velocity centered around 1400 m/s, with a
Lorentzian width of 75 m/s due to the linewidth of the
transition. The atomic fluorescence induced by the probe
beam is collected by a lens, detected by a photomultiplier
and individual photons are counted and recorded by a
computer. The position of the probe beam is scanned in
the z direction, across the atomic beam, using a mirror
mounted on a translation stage to record the transverse
distribution of the atoms in the beam [24]. For a single
longitudinal velocity, there is a one to one correspon-
dence between transverse position and transverse veloci-
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ty. The Gaussian beam waist of the focused probe beam
of 0.2 mm, together with the dimension of the collimating
slit yield a transverse velocity resolution of 0.6 m/s, or
equivalently, a momentum resolution of 7%k
(#k /M =8.5 cm/s).

B. Data with Monte Carlo simulations

Figures 4-6, 8, 9(a), and 12(a) show experimentally
measured momentum distributions (bold lines) and the
results of Monte Carlo simulations (lighter lines) for vari-
ous interaction times #, detunings A, and for a spatial
average along the x axis of ), over the unapertured part
of the standing wave of {,)~50y. The Monte Carlo
simulations have no adjustable parameters other than the
center point (p =0) of the distribution and the normali-
zation. The simulation results shown in Figs. 4, 5, 8, 9(a),
and 12(a) correspond to trajectories of ~ 10* atoms, while
2000 atoms are used for the simulation results in Figs. 6
and 7.

Figure 4 shows results for A=+5y, and for interac-
tion times of (a) t =0 and (b) t =3207. The vertical axis
of these plots represents the probe-induced fluorescence,
which is proportional to the number of atoms. The hor-
izontal axis is the transverse position of the probe beam,
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FIG. 4. Data (bold curves) and results of the Monte Carlo
simulation (lighter lines) for the transverse momentum distribu-
tion of atoms in the beam. The vertical axis is the fluorescence
induced by the weak probe laser, which is Doppler tuned to a
single longitudinal velocity ( ~ 1400 m/s). The horizontal axis is
the transverse position of the probe beam which is scaled to the
transverse momentum in units of #ik (#ik /M =8.5 cm/s). The
standing-wave parameters are {Q,)~50y and A=+5y. The
interaction times are (a) £ =0 and (b) ¢t =3207. The data show
that because of large diffusion, most of the atoms escape the
confined region |p| < p. defined by the dipole force by ¢ = 3207.
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and is scaled to the transverse momentum in units of #k.
The stimulated transition rate for one traveling-wave
component of the standing wave for an atom with veloci-
ty v is R =1yQ3/[4(A—k-v)*+y?]. As discussed ear-
lier, momentum diffusion is predominantly caused by
stimulated transitions randomly involving each traveling
wave. Therefore, the rate of diffusion will depend on R of
both traveling waves. As R increases, the number of
stimulated transitions increases, thereby increasing the
rate of momentum diffusion. Since an atom with v##0
sees the two traveling-wave components Doppler shifted
by unequal amounts, *+|k-v| respectively, R for the com-
ponent which is Doppler shifted further from resonance
is reduced compared to R for v=0. Therefore, the rate
of momentum diffusion is largest at v=0, and decreases
for larger v. For the conditions of Fig. 4, R is large be-
cause A is relatively small, and momentum diffusion is
seen to dominate. Although the dipole force is cooling
for |p|<p. (~25%k), those atoms rapidly diffuse to
|pl > p, where the force changes sign, and are then fur-
ther heated. Therefore, there is no steady-state momen-
tum distribution.

Figure 5 corresponds to A=+9y, and (a) t =0, (b)
t =407, and (c) t =3207. As A increases from 5y to 9y,
R is reduced, so that the rate of the momentum diffusion
decreases. However, the maximum dipole force changes
little, while p, is nearly doubled. Consequently, the force
is able to slow the rate of diffusive loss at larger momen-
ta, where the rate of momentum diffusion is smaller.
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FIG. 5. Data (bold curves) and simulations (lighter curves)
for Q,=50y, A=+9y, and for (a) t =0, (b) ¢t =407, and (c)
t =3207. For this detuning, the rate of loss of atoms from the
confined region is smaller than that of Fig. 4, but still there is no
steady-state distribution.
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Again, there is no steady state, though the rate for
diffusion to higher momentum is reduced.

Figure 6 corresponds to A=+15y, and (a) ¢t =0, (b)
t =407, and (c) t =3207. Diffusion is further diminished
in comparison to the A=5y and 9y cases, and can be
effectively balanced by the force. Note that for blue de-
tuning there should be no exact steady state because
atoms will eventually diffuse to |p| >p,, where they ex-
perience a time-averaged heating force. However, the
rate of diffusion is sufficiently slow that a quasi-
equilibrium is established for time scales of experimental
interest. Figure 7 shows Monte Carlo simulation results
for A=+15y, and for (a) t =0, (b) t =320, (c) t =10007,
(d) t =20007, and (e) t =50007. For the distribution at
t =3207, all the atoms are confined to the region of
|p| <p. (~80%k), and the distribution has a root-mean-
squared (rms) momentum of 22#k, which corresponds to
a temperature of 3 mK (the Doppler cooling limit is 0.14
mK). The distribution becomes noticeably narrower be-
tween ¢ = 3207 and 20007, at which point 99.7% of atoms
remain with |p|<p,, and the distribution has a rms
momentum of 187%k. It will be shown in Sec. IV B that
the rate of cooling which produces the noticeably narrow
feature for ¢ = 20007 is determined by the time scale for
localizing, or ‘“‘channeling” atoms around the standing-
wave nodes. The two small peaks around *67ik, which
become more pronounced for ¢t = 20007, are an artifact of
this semiclassical calculation and are discussed in Sec.
IV B.

Figure 8 corresponds to A= —10y (i.e., red detuning),
and (a) ¢t =0, (b) t=207, (c) t =407, (d) t =807, (e)

1 T T
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1 T T T
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-200 -100 0 100 200

Momentum (units of fik)

FIG. 6. Data (bold curves) and simulations (lighter curves)
for Qy=50y, A=+15y, and for (a) t =0, (b) t =407, and (c)
t =3207. In this case, there is virtually no loss of atoms from
the confined region up to r =3207.
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t =1607, and (f) £ =3207. Here, the force is heating for
lp| <p, (~55%k), and cooling for |p| > p,. Therefore, for
red detuning, the time-averaged force will balance the
diffusive heating, resulting in a true steady state. The
steady state is reached by ¢t =1607. If there were no
diffusion, atoms would be bunched in two narrow spikes
at p ==xp.. Thus, the widths of the two peaks centered
near p ==xp, are a consequence of diffusion. The Monte
Carlo simulations exhibit the correct time evolution of
the momentum distribution.

The data and simulation results for A=—2y and
t =3207 are shown in Fig. 9(a). The initial distribution is
the same as for the previous data. For this case, p, occurs
at a relatively small value, ~ 107ik, where the diffusion is
large. Therefore, no resolvable peaks at p ==+p_ are ex-
pected. Again, the steady state is reached by t =320r.
However, the small central dip appearing in the data,
which is not seen in the simulation, may be due to the rel-
atively large uncertainty in A; if the detuning were slight-
ly redder than believed, the critical momenta would be
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FIG. 7. Monte Carlo simulations for Q,=50y and

A=+15y, and for (a) t=0, (b) t=3207, (c) t=10007, (d)
t =20007, and (e) ¢t =50007. The long-term evolution shows
narrowing of the atomic distribution due to the dipole force
cooling and channeling of atoms. A quasiequilibrium is estab-
lished for ¢ ~20007.
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further separated, enabling the two peaks to be resolved.
Discussion of Fig. 9(b) will be given in Sec. IV C.

It should be noted that a Li atom has a relatively small
mass, so that velocity changes due to either the force or
diffusion are large compared with that of larger mass
atoms. Therefore, we are able to observe situations in
which the diffusion completely dominates (e.g., Fig. 4), as
well as steady-state distributions [e.g., Figs. 8 and 9(a)]
using interaction times of only a few hundred 7.

The data for the various experimental conditions gen-
erally agree with the Monte Carlo simulations quite well.
However, as discussed in Sec. II, the dressed-state Monte
Carlo method begins to fail for large A, and for large p
between doppleron resonances. In these regions, the
stimulated excitation rate is very small. There are slight
discrepancies between the data and simulations that are

e =0
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FIG. 8. Data (bold curves) and simulations (lighter curves)
for Q,=>50y, A= —10y, and for (a) t =0, (b) t =207, (c) t =407,
(d) t =807, (e) t =1607, and (f) t =3207. The true steady-state
distribution is reached by ¢ =1607. Two peaks are centered
near tp, where the atoms would be bunched if there were no
diffusion.
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FIG. 9. Q,=50y and A= —2y. (a) Data (bold curve) and
Monte Carlo simulation (lighter curve) for t =3207. (b) Data
(bold curve) at t =3207 and the steady-state solution of the
Fokker-Planck equation (lighter curve). For this small detun-
ing, the Fokker-Planck equation obviously fails to reproduce
the data.

most pronounced for A= —10y. These discrepancies
may be indicative of the reduced validity of the Monte
Carlo method.

Another effect that needs to be accounted for is the
reduction of the effective interaction times with the
standing wave due to optical pumping. The ground-state
populations are initially distributed among the ground
state hyperfine levels F=1 and 2 with a statistical
weighting factor of 2F + 1. It take some time to optically
pump all the atoms into the F =2,mp=2 state. Once
atoms are in the F =2,m=2 state, they participate in
the two-state cycling transition F =2,mp=2«>F
=3,mr=3. This optical pumping time will reduce the
interaction time with the standing wave. We determined
the average reduction in interaction time for a given (,
and A by evaluating the integral over the entire momen-
tum distribution of the probe-induced fluorescence for
different interaction times with the standing wave. The
quoted interaction times are the actual times for atoms to
pass through the standing wave, but the interaction times
for the simulations are reduced to account for this effect.
The optical pumping times range between ¢t =0 and 207
for our data, depending on (), and A. Slight discrepan-
cies between the data and simulations for small ¢t may be
attributed to uncertainties in this effect.
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IV. DISCUSSION

A. Broadening due to the standing-wave potentials

Interestingly, the distribution in Fig. 6 first becomes
broader at ¢t =407, and then narrower at t =3207. As the
ground-state atoms initially enter the standing wave, they
will experience a sudden rise in their internal potential
energy whose magnitude depends on whether they evolve
into either dressed state |1,n) or |2,n) [the probability
for each can be derived from Eq. (3)]. The potential-
energy functions U,(z) and U,(z), corresponding to the
[1,n ) and |2,n ) states, respectively, can be derived from
the total energies E,, and E,, [Eq. (2)]:

Ul(z)Zg[( Q3sin’kz +A2)2— A7,
. (7
Uz(z)=7[ m — (Q3sin’kz +A2)!?]
where Q,, =(Q3+A2)!"2. The depth of the potential

wells is U, =1#(Q,, —|Al).
that U,,U, =0.

The atomic potential energy can be raised significantly,
especially for atoms in the |1,n ) state near antinodes
[where U,(z) reaches its maximum] and for atoms in the
[2,n) state around nodes [where U,(z) is at its max-
imum]. As the atoms move, their potential energy is con-
verted to kinetic energy, resulting in a broadening of the
momentum distribution. The broadening occurs on the
time scale for an atom to move one optical wavelength.
For the momentum range of interest, this will occur
within several 7. The rms momentum { Ap?)!/? increases
by ~207ik due to this effect alone. However, the distri-
bution is not significantly affected by the dissipative di-
pole force or diffusive heating for ¢ <407. In classical
diffusion theory, the change of kinetic energy of an atom
due to the time-averaged force and the time-averaged
diffusion is determined by d(p2/2M)/dt=F%v
+D%v)/M [6], where FO%v) and D%v) are the spatially
averaged velocity-dependent force and the velocity-
dependent momentum diffusion coefficient, respectively
[5]. A numerical integration of the above equation for
Q,=50y and A=15y, and for atoms with |p| <p,, shows
a time scale of 2007 for the dissipative force to cool the
atoms to the quasiequilibrium distribution determined by
the balance of the dissipation and diffusion. Broadened
distributions at t =407 for both A=+15y and +9y are
attributed to this sudden rise in potential energy. By
t =320, the atoms have been cooled substantially by the
dissipative dipole force, narrowing the distribution.

U, and U, are scaled so

B. The dynamics of atom channeling

For A >0, an atom in the |1,n ) state slowly moving in
a standing wave can be confined to, or channeled in, the
nodes of the standing wave, while for A <0, an atom in
the |2,n ) state can be channeled around the antinodes if,
in either case, the maximum Kkinetic energy of the atom
(p2 /2M) is less than the potential depth U,, [18-20,25].

Figure 10 shows the result of a dressed-state Monte
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FIG. 10. Momentum vs time for the Monte Carlo simulation
of a single atom for Q,=50y and A=+15y. The atomic
motion is periodic with interruptions caused by spontaneous
emission events. The periodic oscillation around zero is clear
evidence of channeling. An occasional spontaneous emission
can cause the atom to become unchanneled.

Carlo simulation of the momentum of a single atom
versus time for Q;=50y and A=15y. For these parame-
ters, U,, =197y, and the maximum channeled momen-
tum p,, =417k, which is determined by p2 /2M =U,,. In
the dressed-state picture, the atomic motion is periodic,
with interruptions caused by spontaneous-emission
events. In this particular simulation, the atom spontane-
ously decays near ¢t =67 and is left channeled in the
|1,n ) state with an oscillation amplitude of 33#%k. Later,
the atom spontaneously decays at t=34r. Then at
t =367, and again at ¢ =807, spontaneous emission leaves
the atom more deeply channeled. Since the |1,n) state
contains only a small component of the excited state at
low field intensity, the more deeply an atom channels, the
smaller the probability for spontaneous decay. In addi-
tion, when spontaneous emission occurs, the decay is

most likely to the |1,n —1) state, in which the atom may
remain channeled. The atom does not spontaneously
emit during the interval £ =807 to 3207. During this in-
terval, it oscillates with maximum momentum of 137k
and with a period of 5r. The atom finally decays to the
|2,n —1) state at ¢t =320r, causing it to become unchan-
neled.

The dressed-atom model is quite appropriate for
describing the motion of a deeply channeled atom since
the rate of spontaneous decay is very small compared to
the atom’s oscillation frequency. Therefore, between
spontaneous-emission events the atom experiences the
dressed-state potentials U,(z) and U,(z) [Eq. (7)]. In or-
der to relate this work to previous investigations of atom
channeling, we note that the potential obtained by
averaging the dressed-state potentials over many
spontaneous-emission events weighted by the relative
probability of occupying each dressed-state results in an
effective potential U, q(z)=1#A In[1+2Q3sin’kz /(4A?
+¥%)] [26]. This potential is appropriate for an atom in
a standing wave when the spontaneous-emission rate is
sufficiently high that the atom does not move a significant
fraction of a wavelength between spontaneous-emission
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events.

In order to describe the channeling quantitatively, the
mean lifetime of a channeled atom for the blue detuning
case (A>0) can be evaluated. Let y, be the
spontaneous-emission rate from the |1,n) state to the
|2,n —1)state. Since y, represents decay to the
unconfined state, the time average of ¥, over an oscilla-
tion period yields the mean lifetime T, :

T,,=(7y) '=(cos*0) 1, (8)

where the expression for ¥, is obtained from Eq. (6) and
6=06(z(t)) is determined by the motion of the atom in
the potential U,(z). For example, for the atom in Fig.
10, with maximum momentum of 137k, T, =2157.

The analysis given above treated the atomic motion
classically. When an atom channels very deeply in the
potential U,(z), its momentum is on the order of 7k and
its motion can no longer be considered classical. The
quantized motion of atoms in optical potential wells,
created by one-dimensional, polarization-gradient cool-
ing, was recently observed [27]. If the oscillation ampli-
tude zy,<<A/2mmin{l,A/Qy}, the potential energy
U,(z) can be approximated as a harmonic potential
Uh(Z ),

#ik 202
4A

where w0 =Qk [#/(2AM)]'/? is the harmonic oscillation
frequency. For Q,=50y and A=15y, z,=A/50 and
o=1.3y. The quantum-mechanical ground state of
U, (z) has an energy E;=1#w and a rms momentum
(Ap2)V/?=5.7#k. T, can be calculated quantum
mechanically using Eq. (8) and the harmonic-oscillator
ground-state wave function, giving T, = 11207.

The evolution of channeling was investigated by
analyzing the ensemble of simulated atomic trajectories
used to generate Fig. 7. In order to be quantum-
mechanically consistent, the total energy E of each atom
in these semiclassical simulations is constrained to be
E > E,. An atom can be identified as channeled if it is in
dressed state |1,n ) and has total energy E < U,,. When-
ever an atom channels more deeply than quantum-
mechanically allowed (E <E,), its energy is manually
raised to E =E,. This ad hoc procedure produces the
two artificial peaks in the momentum distribution shown
in Fig. 7. The two peaks around +67ik correspond to the
rms momentum of an atom channeled in the n =0 level.
The fraction of channeled atoms (squares) as a function of
t is shown in Fig. 11. The dashed line is a fit to the calcu-
lational results using an exponential function with a time
constant of 4007. Figure 11 also shows the fraction of
atoms which are channeled in the “n =0 (circles) and
the “n =17 (triangles) quantum-mechanical energy levels
of U,(z), as a function of t. Atoms in the energy band
1#io <E <#o are identified with the n =0 level while
those in the band #iw < E <2fiw are identified with the
n =1 level. The continuous line is a fit to an exponential
function with a time constant of 7507 for the n =0 level.
It is evident that the narrowing of the distribution shown
in Fig. 7 is a consequence of the increase in the number of

U,(2)=

zz=%Mcozz2 R 9)
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FIG. 11. The ensemble of simulated atomic trajectories used
to generate Fig. 7 is sorted to obtain the fraction of channeled
atoms (squares), the fraction of the atoms channeled with an en-
ergy near to that of the n =0 quantum-mechanical energy level
(circles), and the fraction channeled near the n =1 level (trian-
gles), as a function of z. The dashed line is a fit to an exponen-
tial function with a time constant of 4007, while the continuous
line is a fit to an exponential function with a time constant of
7507. A quasiequilibrium is established for # ~20007 in agree-
ment with the results shown in Fig. 7.

channeled atoms, especially those in the n =0 level. A
quasiequilibrium is reached when the rate to cool and
load atoms into these channeled levels is balanced with
the loss rate out of the channels due to spontaneous de-
cay [Eq. (8)]. For the case of Fig. 11, the quasi-
equilibrium occurs at ¢ ~20007, at which point the frac-
tion of atoms channeled, the fraction in the n =0, and the
fraction in the n =1 levels reach their constant values,
84%, 42% and 14%, respectively. This time scale to
reach the quasiequilibrium is consistent with the results
shown in Fig. 7. Furthermore, the results shown in Figs.
7 and 11 are consistent with those of a similar calculation
presented in Ref. [20], in which a narrow peak in the
momentum distribution, attributed to channeled atoms,
evolves with a time constant of several thousand 7.

Understanding the dynamics of atom channeling is
especially important for developing a new, recently
demonstrated cooling method which is based on the adia-
batic cooling of channeled atoms in an intense, blue-
detuned standing wave [19]. It was demonstrated that
channeled atoms can be cooled to a momentum near the
single-photon recoil limit #ik by adiabatic lowering the
standing wave intensity. The Monte Carlo method was
used to analyze this process.
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C. The Fokker-Planck equation

For long interaction times ¢ >>7 and large atomic mo-
menta p >>#k, the Wigner density matrix equations can
be used to represent the classical motion of an ensemble
of atoms. The Wigner distribution can be shown to obey
a Fokker-Planck equation (FPE) [2,5,28]. Various tech-
niques have been developed to solve the FPE in order to
calculate atomic momentum distributions [29]. One of
the most effective ways is to transform the FPE into the
Langevin equation and use Monte Carlo techniques to
simulate the Langevin force. The transformed Langevin
equation has the form [29]

p(t+At)=p(t)+F°At+r,(D°A1)'/?, (10)

where F'=F°p) and D°=D%p) are the spatially aver-
aged velocity-dependent force, and the velocity-
dependent momentum diffusion coefficient, respectively.
r, is a Gaussian random variable with zero mean and
variance 2 (i.e., {r,)=0and (r2)=2). F° can be calcu-
lated by a continued-fraction method [4,5], and the nu-
merical solution of D® can be obtained by integrating
Eqgs. (8.5) and (8.10) in Ref. [5] over many wavelengths,
until all the transients die out, leaving the system in a
periodic steady state. The second term on the right-hand
side of Eq. (10) is the momentum change due to the deter-
ministic force, while the last term describes the effect due
to momentum diffusion, that is, the stochastic Langevin
force. It becomes straightforward to obtain a momentum
distribution for any initial distribution. For one simula-
tion corresponding to a single atom, at every time inter-
val t—¢ +At, the atomic momentum change is given by
Eq. (10). After many independent simulations, corre-
sponding to many atoms, the desired momentum distri-
bution is produced, with some statistical uncertainty.

The FPE approach is not applicable in the regime
where p ~ ik, since the atomic motion must be described
quantum mechanically in this case. In addition, the spa-
tially averaged F° and D° fail to account for the change
in the atoms kinetic energy as they move between poten-
tial hill and valley. Therefore, this method should be
most inaccurate for atoms with small p, for whose kinetic
energy is comparable to U,,. In Fig. 9(b), the steady-state
solution of the FPE [5] (lighter line) for A= —2y is com-
pared with the data (bold line) for ¢#=320r. The
discrepancy is large because a large fraction of the atoms
have relatively small momenta. However, reasonably
good agreement is found for large red detuning as shown
in Fig. 12(b) for A= — 10y, since most of the atoms have
relatively large momenta. Figure 8(f) is duplicated in Fig.
12(a) in order to compare the Monte Carlo result with the
FPE calculation. The oscillations in the FPE result for
A=—10y are due to the doppleron resonances. The
Monte Carlo method and the Fokker-Planck equation
should be complementary since they are best suited to op-
posite momentum regimes.

V. CONCLUSION

In summary, we have investigated the effect of the di-
pole force and its fluctuation (i.e., momentum diffusion)
on the motion of Li atoms in an intense standing wave in
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FIG. 12. Q,=50y and A=—10y. (a) Data (bold line) and
Monte Carlo simulation (lighter line) for ¢ =320r [duplicate of
Fig. 8(f)]. (b) Data (bold line) at t =320 and the steady-state
solution of the Fokker-Planck equation (lighter line). For this
detuning, both the Monte Carlo method and the Fokker-Planck
equation agree with the data reasonably well.

the regime of high Rabi frequency Q,>>y and long in-
teraction times 7>>7, and for atomic momenta p ~p,.
We find that there is no exact steady-state momentum
distribution for a blue-detuned standing-wave frequency.
For small detunings (A <<(), diffusive heating dom-
inates the cooling provided by the time-averaged dipole
force. However, for sufficiently large blue detunings, the
rate of diffusion slows and a quasiequilibrium can be es-
tablished on time scales of experimental interest. For red
detunings, the diffusion is balanced by the force and a
true steady state is achieved. We have applied a Monte
Carlo method based on the density-matrix equations in
the dressed-state representation to simulate the atomic
motion, which is applicable to p ~p,. The data for vari-
ous laser detunings are in good agreement with the
Monte Carlo simulations. We also compare the data with
momentum distributions calculated using the Fokker-
Planck equation, and find that this approach fails for
some regions of parameter space.

We have calculated the spontaneous emission lifetimes
of atoms channeled in the lowest levels of the standing-
wave potential and modeled the dynamics of channeling
with the Monte Carlo method. A more accurate repre-
sentation of the dynamics will require a fully-quantum-
mechanical calculation. Precise calculations of the rates
for loading the quantum states of the channels and the
loss rate out of them may lead to more efficient tech-
niques for adiabatically cooling atoms with intense stand-
ing waves.
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