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Dissipative transport of a Bose-Einstein condensate
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We investigate the effects of impurities, either correlated disorder or a single Gaussian defect, on the collective
dipole motion of a Bose-Einstein condensate of 7Li in an optical trap. We find that this motion is damped at a rate
dependent on the impurity strength, condensate center-of-mass velocity, and interatomic interactions. Damping
in the Thomas-Fermi regime depends universally on the disordered potential strength scaled to the condensate
chemical potential and the condensate velocity scaled to the speed of sound. The damping rate is comparatively
small in the weakly interacting regime, and, in this case, is accompanied by strong condensate fragmentation.
In situ and time-of-flight images of the atomic cloud provide evidence that this fragmentation is driven by dark
soliton formation.
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I. INTRODUCTION

The creation of Bose-Einstein condensates (BECs) of
ultracold atomic gases [1–3] has enabled investigations of
some of the most fundamental concepts of condensed matter
physics [4]. One of the most fruitful avenues of research has
involved the use of BECs to probe the nature of superfluidity
itself. Early studies led to observations of the critical velocity
for the onset of dissipation [5–7] and quantized vortices [8–11].

Recently, there has been much interest in using BECs to
emulate disordered superfluids (cf. Refs. [12,13]). Results
from such experiments have wide ranging implications, from
the transport of superfluid He in porous media [14] to
the motion of atomic BECs in microchip traps or matter
waveguides [15–18]. Of particular interest is how disorder
can disrupt, or can even destroy, superfluidity. Due to their
exquisite controllability, atomic BECs are ideal physical
systems with which to systematically study the interplay
between superfluidity, disorder, and interatomic interactions.

In this paper, we report measurements of the dissipation
of the superfluid flow of an elongated BEC subject to
either a disordered potential or a single Gaussian defect.
We characterize the superfluid nature of the harmonically
trapped cloud through detailed measurements of the velocity-
dependent damping of the collective dipole mode. We use
a BEC of 7Li in the |F = 1,mF = 1〉 internal state, where
the interactions may be tuned via a wide Feshbach resonance
located at 737 G [19–21]. This resonance includes a shallow
zero-crossing that enables the s-wave scattering length a to be
tuned over a range of nearly seven decades, with a as small as
0.01 a0, where a0 is the Bohr radius [21]. The gas may be made
nearly ideal with transport properties strikingly different from
the more strongly interacting case. Furthermore, the healing
length ξ = 1/

√
8πn0a, where n0 is the peak density of the

condensate, may be made as large as the condensate itself.
In this regime, effects due to the fundamental wave nature
of individual atoms become important. For example, if ξ is
on the order of the disorder grain size or larger, a BEC can
become an Anderson localized insulator [22,23]. In addition,
the chemical potential µ in this weakly interacting regime may
be less than the radial harmonic oscillator ground-state energy,
which effectively freezes out the radial dynamics and leads to
quasi-one-dimensional (quasi-1D) behavior.

A. Superfluidity of a BEC

One of the seminal results originating from the theory
of superfluid 4He is Landau’s criterion. According to this
criterion, elementary excitations can be created only if the fluid
velocity v is greater than Landau’s critical velocity vL [24,25],

vL = min
ε(p)

p
, (1)

where ε(p) is the energy of an elementary excitation of
momentum p. For the case of a weakly interacting BEC with
uniform density n, Bogoliubov theory gives the excitation
energy as [26]

ε(p) =
√(

p2

2m

)2

+ c2p2, (2)

where m is the atomic mass and c is the bulk speed of sound.
For small p, this spectrum reduces to the well-known relation
ε(p) = cp, which describes phonon excitations with

c =
√

nU

m
, (3)

where U = 4πh̄2a/m. Application of Eq. (1) gives vL = c,
which implies that only supersonic flow can dissipate energy
through the creation of elementary excitations; conversely, if
the flow is subsonic, excitations are energetically forbidden,
and the flow is superfluid. Application of Eq. (1) to the case of a
noninteracting condensate implies that vL = 0, which suggests
that superfluidity cannot exist in an ideal gas.

The dynamics of highly elongated BECs can be accurately
modeled by using an effective one-dimensional (1D) nonlinear
Schrödinger equation (NLSE) [27–30]. In such a treatment,
one starts from the three-dimensional (3D) Gross-Pitaevskii
equation (GPE), and integrates out the radial dimension. The
effect of this integration is a reduction in c relative to Eq. (3)
due to the average over the nonuniform radial density. For
the case of a harmonically trapped BEC in the Thomas-Fermi
regime, the bulk density n is replaced with the average density
n0/2. Therefore, the speed of sound becomes

c0 =
√

n0U

2m
. (4)
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A theoretical description of an elongated BEC beyond the
standard 1D NLSE leads to a reduction (on the order of 10%)
in the speed of sound relative to Eq. (4) [31]. In addition, the
spectrum of axially propagating excitations in a cylindrical
BEC can differ dramatically from Eq. (2) when µ � h̄ωr ,
where µ is the chemical potential, which leads to an additional
reduction in vL [32]. The highest µ condensates created in
our system have µ/h̄ωr ∼ 13, which result in a predicted 20%
reduction [32].

When attempting to explain the onset of dissipation in
any particular experimental situation, care must be taken to
apply Landau’s criterion locally, by using the local density
n (r = 0,z) instead of n0 ≡ n (r = 0, z = 0) in Eq. (4) [33].
For arbitrary trapping potentials, excitations will be nucleated
first in regions of low density where the local speed of sound
is small and the critical velocity is reduced relative to the
bulk. As a consequence of this effect, experimentally observed
critical velocities are often much lower than the bulk speed of
sound [5–7].

The remainder of this paper is organized as follows: In
Sec. II, we describe our experimental methods for creating a
BEC in either a disordered harmonic potential or a harmonic
potential with a single Gaussian defect; in Secs. III and IV, we
discuss our results for the induced dissipation for these two
scenarios, where both the 3D Thomas-Fermi and the quasi-1D
weakly interacting regimes are discussed for each case. We
conclude in Sec. V with a discussion that relates the similarities
and differences between dissipation in the two types of
potentials, and directions for future studies.

II. EXPERIMENTAL METHOD

We create a BEC of 7Li in a highly elongated, cylindri-
cally symmetric, hybrid magnetic-optical dipole trap [21,34]
with radial and axial trapping frequencies in the ranges of
ωr/ (2π ) ∼ 220–460 Hz and ωz/ (2π ) ∼ 4–5.5 Hz, respec-
tively. The radial confinement is dominated by the optical
trapping potential formed by a single focused laser beam
with a wavelength of 1030 nm and a 1/e2 Gaussian radius
of 33 µm, while the axial confinement is dominated by
an adjustable harmonically confining magnetic field. A set
of Helmholtz coils provides a uniform bias field along the
z-axis of the trap, which allows for the tuning of a via a
Feshbach resonance at 737 G [19–21]. The BEC is created
at a field of 717 G where a is positive and large enough
(∼200 a0) to allow for efficient evaporative cooling in the
optical trap but is small enough to avoid substantial three-body
losses. At this field, the trap lifetime is limited to ∼10 s
due to three-body recombination with a loss coefficient of
L3 ∼ 10−26 cm6/s [35]. After evaporation, the BEC has no
discernible thermal component from which we estimate that
the temperature T < 0.5TC , where TC is the BEC transition
temperature. The bias field is then ramped over a time scale
on the order of seconds to achieve the desired value for a.

We excite the collective dipole mode of the condensate
by pulsing on an axially oriented magnetic gradient, thereby
abruptly shifting the center of the harmonic trap. After 1/4
of an oscillation period, the condensate is at the peak of an
oscillation, and we abruptly switch on either a disordered
potential with an extent exceeding the oscillation amplitude
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FIG. 1. (Color online) Disordered potential created from laser
speckle. (a) Cut through an image of the speckle potential. The
disorder strength VD is proportional to the average value of the
intensity 〈I 〉 (dashed line). (b) The autocorrelation of the intensity
distribution is well fit by a Gaussian with 1/e2 radius σD = 5.5 µm.
For some of the data in this paper (Figs. 6, 8, and 10), σD = 3.4 µm.

of the condensate or a single narrow Gaussian defect located
near the trap center. By varying the duration of the gradient
pulse, we precisely vary the amplitude A of the oscillation,
and, therefore, the initial peak velocity v0 of the condensate
center of mass (c.m.), where v0 = Aωz. At various times
thereafter, we image the cloud to track the c.m. location as
well as the shape of the density distribution. We investigate the
dependence of the damped dipole motion on v0, the strength
of the disordered potential or single Gaussian defect, and on
the value of a.

The disordered potential is an optical speckle pattern
created by passing a laser beam through a diffuser plate
in a manner similar to previous studies [34,36–38]. This
beam is directed perpendicular to the trap z-axis. Figure 1
shows a characteristic intensity slice of the disorder. The
disorder speckle size σD is defined to be the 1/e2 radius
of a Gaussian fit to the autocorrelation of the intensity
pattern and is measured to be σD = 5.5 µm. The beam has
been cylindrically focused such that, in the radial direction,
the speckle size is much larger than the radial Thomas-
Fermi radius ∼10 µm, which makes the disorder effectively
1D. We have verified that the intensity distribution of the
disorder follows a decaying exponential P (I ) = 〈I 〉−1e−I/〈I 〉,
as expected for fully developed speckle [39]. The average
value of the speckle intensity 〈I 〉 determines the disorder
strength through the relation VD = h̄�2〈I 〉/(4Isat�), where
the transition linewidth � = 2π × 5.9 MHz and the satu-
ration intensity Isat = 5.1 mW/cm2. The detuning from the
7Li 2S → 2P transition is � = 2π × 300 GHz, which pro-
duces a repulsive disorder potential. For the strongest disorder
used in these studies, off-resonant scattering from the disorder
occurs at a rate of ∼0.1 s−1. The statistical properties of
the speckle pattern are measured by direct imaging with a
charge-coupled device camera before the optical system is
installed onto the experimental apparatus.

A cylindrically focused laser beam is used for the studies
that involve a single Gaussian defect. This beam has a Gaussian
intensity distribution I (z,r) = I0e

−2(r2/w2
r +z2/w2

z ), with beam
waists wr = 5 mm and wz = 12 µm. The radial size of the
defect wr is much larger than RTF, which ensures that flow
around the defect is suppressed. We conduct experiments by
using both a repulsive (blue-detuned) and an attractive (red-
detuned) defect with |�| = 2π × 300 GHz.
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FIG. 2. (Color online) Damping of a condensate initially traveling
supersonically through a disordered potential with VD/h = 280 Hz.
The center of the BEC (circles) is extracted from a Thomas-Fermi
fit to the radially integrated column density (the axial density). The
thick lines that trace the amplitude are phenomenological guides to
the eye. The initial amplitude is A = 0.6 mm, which yields an initial
peak velocity of v0 = 20 mm/s. For these data, ωz = 2π × 5.5 Hz,
ωr = 2π × 260 Hz, a = 25 a0, and µ = 1

2 mω2
zR

2
TF = h × 1.1 kHz,

where RTF is the axial Thomas-Fermi radius. In addition, c0 =
5.6 mm/s, ξ = 0.8 µm, and ξ/σD = 0.2. The insets show details
of the oscillation at early and late times.

We adjust the healing length through an approximate range
0.5 µm < ξ < 20 µm by tuning a. Thus, a wide range of
values is achievable for the relevant dimensionless quantities
0.1 < ξ/σD < 3.6 and 0.04 < ξ/wz < 1.7.

III. DISORDER-INDUCED DISSIPATION

A. Thomas-Fermi regime

Figure 2 shows the position of the center of a condensate
at various times during a dipole oscillation in a disordered
potential. The dipole oscillation is initiated by a kick that
produces an initial peak velocity of v0 = 20 mm/s when
the condensate passes through the center of the trap. For
these data, the condensate begins its motion well into the
supersonic regime with v0 ∼ 4c0. The resulting oscillation is
characterized by a time-dependent damping, which suggests
that the damping depends on v0. The damping rate is initially
small, goes through a maximum after about 3.8 s, and then
diminishes at later times. We fit four-period sections of the
data in Fig. 2 to the form of a damped harmonic oscillator,

z(t) = Ae−βt cos (ω′t + φ), (5)

where ω′ = (ω2
z − β2)1/2. The peak velocity v0 is then com-

puted from the fitted A for each data subset to obtain the
damping coefficient β as a function of v0, with the results
shown in Fig. 3. The damping monotonically increases for
small v0 and peaks near v0 ∼ 1.1c0, followed by a nearly
exponential decay of β for v0 > c0.

A perturbative theoretical treatment has produced a closed-
form solution for the velocity-dependent damping, which
results in good quantitative agreement with our measure-
ments [40]. For weak disorder, the qualitative behavior shown
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FIG. 3. (Color online) Velocity-dependent damping. Results of
fitting the data of Fig. 2 to Eq. (5) by using a traveling four-period
window. The peak velocity v0 is obtained from v0 = Aωz. The solid
line is a square-root function convolved with an exponential decay
and is meant as a guide to the eye. The inset shows the same data on a
semilogarithmic plot, which emphasizes the nearly exponential decay
of β/ωz for large v0/c0. Vertical error bars correspond to the range
in β for which �χ 2 = 1 for the fit to Eq. (5) while simultaneously
adjusting A, β, and φ to minimize χ2. Horizontal error bars are
determined by using an identical process for A in Eq. (5) and are
typically ∼15%. The effects of systematic uncertainty in imaging
magnification and variations in N are ∼10% in the horizontal axis
and ∼5% in the vertical axis; these are not included in the displayed
error bars.

in Fig. 3 can be understood through a local Landau critical
velocity argument. At low velocities, Bogoliubov quasipar-
ticles are only created within a thin shell at the surface of
the condensate, where the low density leads to a low local
speed of sound, and, therefore, a low local vL. As the velocity
of the condensate increases, a larger condensate volume can
support excitations because a larger fraction of the atoms
violates the local Landau criterion. The maximum damping
occurs near the point where the velocity of the BEC reaches
the peak speed of sound c0 in the condensate. At even larger
velocities, the excitation volume cannot increase further, but
the Bogoliubov density of states decreases, which results in
the observed exponential decrease of the damping.

Except for the absence of a critical velocity, the qualitative
behavior of the velocity-dependent damping shown in Fig. 3 is
remarkably similar to that predicted by 1D NLSE simulations
of a uniform repulsive BEC in the presence of an oscillating
Gaussian obstacle [41,42]. In these simulations, above a certain
impurity strength-dependent critical velocity, the impurity,
which moves at a velocity v, deposits energy into the BEC in
the form of density fluctuations. The average rate of condensate
energy growth 〈dE/dt〉 increases nearly linearly with v, to a
peak at v ∼ c as the defect excites dark solitons and linear
sound waves. As the velocity of the defect is increased further,
the density fluctuations decrease significantly, accompanied
by an exponential decrease of 〈dE/dt〉, similar to our
experimental observations. In contrast to a single impurity
in a uniform condensate, a defect is always present in a
low-density region of a condensate in a disordered harmonic
trap. Consequently, v0 is always greater than the local speed of
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FIG. 4. (Color online) Characteristic in situ polarization phase-
contrast images of the data shown in Fig. 2 at various times. The
images are nearly equally spaced in time between the time labels.

sound at the edge of the condensate, and excitations are always
present. Previous experimental [34,36,43] and numerical [44]
studies of the damping of collective modes and the damping
of Bloch oscillations in a disordered lattice potential [45,46]
have found qualitatively similar results.

Figure 4 shows in situ polarization phase-contrast im-
ages [47] of the BEC at various times in the oscillation shown
in Fig. 2. The damping clearly does not result from a loss of col-
lectivity as predicted by 1D NLSE numerical simulations [44].
Rather, the BEC nearly maintains its original shape throughout
the oscillation. Close inspection of the density distributions in
Fig. 4 reveals a tail of noncondensed atoms that appears to
oscillate slightly out of phase with the central Thomas-Fermi
distribution. At early times, these noncondensed atoms appear
to lag behind the BEC, while at later times, they oscillate
in-phase with it. This two-component out-of-phase oscillation
is reminiscent of the second sound-like oscillation reported
in Ref. [48]. In that work, the initial temperature was high
enough that damping occurred due to the interaction between
a BEC and a thermal component. In contrast to those results,
we observe that the dipole oscillation is undamped in the
absence of the disordered potential. Furthermore, there is no
observable heating due to the quick switch on of the disorder.
In our experiment, therefore, the presence of the noncondensed
component seems to be linked to the motion of the BEC in the
disordered potential. A recent numerical simulation, which
uses a truncated Wigner method, predicts the emission of
incoherent atoms from a BEC moving supersonically through
a disordered potential [49], consistent with our observations.

We have investigated this effect in further detail by using
in situ absorption imaging, which allows for the determination
of the low-density noncondensed wings of the distributions.
Figure 5 shows that, by fitting the cloud to a bimodal Thomas-
Fermi plus Gaussian profile, a phase difference of �φ = 0.23
between the condensed and noncondensed cloud centers is
found. Note that the interaction strength is different for these
data than for those data shown in Figs. 2–4.

We have systematically investigated the dependence of β

on the disorder strength VD . Figure 6 shows the normalized
damping parameter β/ωz plotted against the normalized
disorder strength VD/µ, where µ is the chemical potential
of the condensate prior to the kick and before the disorder is
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FIG. 5. (Color online) Generation of a noncondensed component.
(a) Squares show the center of the Thomas-Fermi (condensed) com-
ponent, and circles show the center of the Gaussian (noncondensed)
component. The Gaussian center trails behind the Thomas-Fermi
center and has a smaller amplitude of oscillation. Within experimental
uncertainty, ωz = 2π × 5.1(2) Hz for both components. For these
data, a = 200 a0, N = 3 × 105, µ/h = 1.8 kHz, VD/µ = 0.22, v0 =
28 mm/s, c0 = 7.2 mm/s, and ωr = 2π × 220 Hz. (b)–(d) Axial
density distributions with bimodal fits (solid lines) and a single-
component Thomas-Fermi fit (dashed lines) at various times during
the oscillation: (b) 28 ms, (c) 100 ms, and (d) 190 ms. The condensates
in (b) and (d) are traveling in the positive direction, whereas the
condensate in (c) is traveling in the negative direction.

switched on. We find the data fit well to a power law,

β

ωz

∝
(

VD

µ

)p

(6)

for all measured velocities. The precise value of p, however,
depends weakly on v0 across the range of velocities 0 <

v0/c0 < 5, with a mean value of p = 2.1(5) (see Fig. 6 inset).
Figure 7 presents the measured values of β as a function of

both VD and v0. As expected, a vertical trace through this plot
shows a qualitative similarity to Fig. 3. We observe two distinct
regimes of reduced damping: one where v0/c0 
 1 and the
other when v0/c0 � 1, where the damping reaches a maximum
at v0 ∼ c0. A numerical simulation that uses an effective 1D
NLSE has produced qualitatively similar results [44].

B. Variation with interaction strength

We observe nearly universal behavior for β as a function of
both VD/µ and v0/c0 for BECs in the Thomas-Fermi regime.
As already shown in Fig. 6, β ∝ (VD/µ)2 for condensates
with values of µ that differ by a factor of 3. Shown in Fig. 8
is a comparison between the damping at interaction strengths

033603-4



DISSIPATIVE TRANSPORT OF A BOSE-EINSTEIN . . . PHYSICAL REVIEW A 82, 033603 (2010)

 1

 2

 3

 0  1  2  3  4  5

p

v0/c0

10-3

10-2

10-1

100

 0.01  0.1

D
am

pi
ng

β/
ω
z

Disorder strength VD/µ
 0.4

FIG. 6. (Color online) Damping vs VD . Open circles correspond
to the data shown in Fig. 7 (a = 200 a0) in the range 0.7 < v0/c0 <
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2.2 kHz; squares correspond to a = 25 a0, v0/c0 = 1.2, µ/h =
750 Hz. The damping parameter β follows a power law with p ∼ 2
(solid and dashed lines), independent of µ or a. To minimize
systematic effects associated with the velocity dependence of β (e.g.,
Figs. 2 and 3), we fit a four-period window for which the data are
described well by Eq. (5). Vertical error bars are as defined in Fig. 3.
The inset shows the fit values of p as a function of v0/c0 for a
collection of data sets at a = 200 a0. The dashed lines indicate the
plus-and-minus one standard deviation extent for the collection of
measured velocities. Vertical error bars for p are determined as in
Fig. 3 by using a fit to Eq. (6) for each oscillation at a given v0/c0.
Data that correspond to filled circles and squares were taken by
using an optical trap setup different from that described in Sec. II
with λ = 1064 nm and a beam waist of 24 µm, which results in
ωz = 2π × 4.9 Hz, ωr = 2π × 460 Hz, and N = 3 × 105. Also, for
these data sets, σD = 3.4 µm.

a = 200 a0 and a = 28 a0, with constant VD/µ. Although the
respective values of c0 differ by nearly a factor of 2 between
the two data sets, the peak damping occurs at v0/c0 ∼ 1 for
both, which demonstrates the nearly universal behavior of
β vs v0/c0. On the other hand, the peak damping rate between
the two data sets differs by nearly a factor of 5, which shows
that while the general shape of the damping curve is universal,
the magnitude of the damping is not.

An investigation of the effect of interatomic interactions
on the peak damping (v0/c0 ∼ 1) at fixed VD/µ is shown in
Fig. 9. We find that β scales linearly with a, going to zero with
decreasing interactions, consistent with the disappearance of
the low-energy phonon portion of the excitation spectrum as
U → 0.

The elongated confinement geometry in our system facili-
tates the investigation of the dimensional crossover from the
3D to the quasi-1D regime where µ 
 h̄ωr [50,51]. Shown in
Fig. 10 are measurements of β vs µ at constant VD and v0.
When µ > h̄ωr (to the right of the vertical dashed line) and
v0 is comparable to, or less than c0 (as is the case for the data
shown as open and closed circles), we find β ∝ µ−1.4. With
reference to Fig. 7, one can gain a qualitative understanding
of the behavior of the system going from high to low µ:
when starting subsonically (open and filled circles), the system
travels along a path from the weakly damped regime (lower
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FIG. 7. (Color) Transport regimes of a BEC that travels through
a disordered harmonic potential. Black squares show the values of
disorder strength VD/µ and initial peak c.m. velocity v0/c0 for the
data used to extract β from a fit to Eq. (5) by using four to six periods
of oscillation. The interpolated color map and contour lines for β/ωz

are derived from the measured results. These measurements have a =
200 a0, N = 2 × 105 atoms, µ/h = 1.5 kHz, c0 = 6.5 mm/s, ωr =
2π × 260 Hz, and ωz = 2π × 5.5 Hz. The variable experimental
quantities are A and VD . Due to small shot-to-shot fluctuations in the
position of the c.m. of the cloud, measurements with v0 < 0.2c0 are
not reliable. Data with β � 2 × 10−3 are consistent with undamped
motion.

left corner of Fig. 7) toward the regime of strong damping
(middle right region). As µ decreases, the quantities VD/µ and
v0/c0 increase correspondingly, and the system follows a path
that crosses several contours of constant β while approaching
the strongly damped regime near v/c ∼ 1. Consequently, the
system displays a strong dependence of β on µ. Blue squares
depict a different situation where the system is supersonic
for all µ investigated. For large µ, the system occupies a
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FIG. 8. (Color online) Universal damping vs v0/c0. The disorder
strength was adjusted to keep 0.30 < VD/µ < 0.35 for all of the data.
Squares correspond to a = 28 a0, N = 2.5 × 105, µ/h = 550 Hz,
c0 = 4.0 mm/s, ωz = 2π × 5.5 Hz, and ωr = 2π × 260 Hz; open
circles correspond to a = 200 a0, N = 3 × 105, µ/h = 2.4 kHz,
c0 = 8.3 mm/s, ωz = 2π × 4.5 Hz, and ωr = 2π × 460 Hz; filled
circles correspond to the same parameters as in Fig. 7. Error bars are
as defined in Fig. 3.
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solution of the GPE [21] (note that the upper tick marks are not strictly
logarithmically spaced). The linear fit has a slope 0.002a−1

0 . Vertical
error bars are as defined in Fig. 3.

point in Fig. 7 with v0/c0 > 1 and VD/µ < 1. As µ decreases,
the system follows a diagonal path, roughly tracing a contour
line of constant β, moving into the regime of v0/c0 � 1 and
VD/µ � 1 (top-right corner of Fig. 7). When µ < h̄ωr (to
the left of the vertical dashed line) and v0 � c0, we observe
a negligible dependence of β on µ. In this quasi-1D regime,
β is affected only by changing VD or v0, consistent with the
behavior expected for a nearly ideal classical fluid. This may
be understood with reference to Eq. (2) where, for v � c, the
first term in the Bogoliubov excitation spectrum dominates
making the system quasi-ideal with ε(p) independent of µ.

Figure 11 shows damping of a weakly interacting gas
with a = 0.4 a0, deep into the quasi-1D regime, where
µ/h̄ωr ∼ 0.1. We find that VD = 4µ produces the same
damping (β/ωz = 0.07) as that for a BEC with a = 200 a0

and VD = 0.25µ. The nature of the damped motion of a
weakly interacting gas in strong disorder is strikingly different
from the damped motion of a strongly interacting gas in
weak disorder, although the timescale of the damping in
both cases is comparable. Figure 11 shows that the damping
in the weakly interacting regime is caused by the loss of
coherence of the collective dipole mode brought on by
extensive fragmentation. Because VD > µ, it is perhaps not
surprising that the condensate quickly fragments. While the
c.m. of the cloud damps after about five oscillation periods,
examination of shot-to-shot differences in the damped density
distributions reveal that the positions of the fragments are
highly nonrepeatable, which suggests that some fragments
remain in motion. This residual motion is consistent with
the long thermalization time expected from weak two-body
interactions. It is interesting to note that the maximum
single-particle kinetic energy EK = 1

2mω2
zA

2 = h × 295 Hz
is 2.8 times larger than the average height of the disordered
potential. Therefore, the observed dephasing is consistent with
the expected behavior of a gas of noninteracting particles that
are interacting with a disordered potential where the disorder
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FIG. 10. (Color online) Damping vs µ with fixed VD and v0.
Squares and filled circles correspond to VD/h = 370 Hz with v0 = 11
and 6 mm/s, respectively. Open circles correspond to VD/h =
140 Hz and v0 = 6 mm/s. The vertical dashed line denotes µ = h̄ωr ,
at which point, v0/c0 = 1.7 for the open and filled circles and
v0/c0 = 3 for the squares. We varied µ by adjusting a, shown on
the upper horizontal axis (note that the upper tick marks are not
strictly logarithmically spaced). Values for µ are obtained from a
variational solution of the GPE [21] using the following measured
experimental parameters: ωr = 2π × 460 Hz, ωz = 2π × 4.5 Hz,
and N = 4 × 105 atoms. For this data, σD = 3.4 µm. Vertical error
bars are as defined in Fig. 3.

strength is smaller than the kinetic energy of the individual
particles.

IV. DISSIPATION INDUCED BY A SINGLE
GAUSSIAN DEFECT

A. Thomas-Fermi regime

In an effort to better understand the mechanisms responsible
for the damping by disorder, we have investigated the dissipa-
tion induced by a single Gaussian defect. The defect potential
is described by V (z) = VDe−2z2/w2

z , where wz = 12 µm. The
static effect of either an attractive or a repulsive defect on a
repulsively interacting BEC in the Thomas-Fermi regime is
shown in Fig. 12. As expected, the attractive defect leads
to an increase in the density in the region of the defect,
accompanied by a small decrease in the density in the wings
of the distribution, while the opposite is true for a repulsive
defect.

The dynamical distributions can differ dramatically from
the static case, as shown in Fig. 13 where in situ axial densities
are displayed for various times throughout the dipole oscilla-
tion. In the following discussion, we refer to the upstream side
of the condensate as the portion of the BEC that reaches the
barrier after the leading or downstream portion. The interaction
of the BEC with the repulsive defect, shown in Fig. 13(b),
produces a deep downstream density rarefication as well as a
large upstream density compression, which bears a qualitative
similarity to a shock wave. Similar structures have been
predicted in effective 1D theoretical treatments [30,52] and
interpreted as upstream and downstream dispersive shocks. In
contrast, the interaction of the BEC with the attractive defect,
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FIG. 11. (Color online) Damping of a nearly noninteracting
gas. For this data, a = 0.4 a0, N = 2 × 105, µ/h = 26 Hz, c =
1.2 mm/s, VD = 4µ, ωr = 2π × 240 Hz, and ωz = 2π × 5.3 Hz.
(a) C.m. position (circles) and radius (squares) of the condensate
as a function of time. Here, we use statistically determined values
for the c.m. zcm = ∫

zn(z) dz/N and radius R, given by R2 =
4

∫
(z − zcm)2n(z) dz/N . (b)–(d) Axial density traces at various times

in the oscillation: (b) 40 ms (c) 100 ms, (d) 960 ms. After two
full oscillations, the cloud has fragmented and has spread to a size
comparable with the initial oscillation amplitude.

shown in Fig. 13(a), produces no such shock waves. However,
the cloud is slightly compressed near the defect simply due
to the attractive defect potential. Because v0 > c0, phonon
excitations cannot be emitted in the upstream direction as they
would have to propagate faster than the speed of sound. Close
inspection of Fig. 13(a) reveals minimal density modulation
of the upstream side, while more modulation is evident on the
downstream side.

Several 1D theoretical studies predict the formation of
downstream propagating dark solitons in addition to an
upstream dispersive shock as a repulsive defect is superson-
ically swept through a condensate [30,42,44,52–56], which
is consistent with the density fluctuations visible in Fig. 13.
However, the size of the dark solitons will be on the order of
the healing length ξ = 0.5 µm for these condensates, which
is a factor of 6 smaller than our imaging resolution.

Figure 14 shows time-of-flight images of the BEC, which
oscillate in the presence of a single repulsive defect. In
contrast to the in situ images of Fig. 13(b), after time-of-
flight, additional structures emerge, which were not previously
visible. These structures are consistent with dark solitons that
form from short length-scale in situ phase fluctuations that
map onto larger-scale density modulations after time-of-flight.
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FIG. 12. (Color online) BEC in a harmonic trap with a single
Gaussian defect. (a)–(c) correspond to a repulsive defect, while
(d)–(f) correspond to an attractive one. (a) and (d) In situ polarization
phase-contrast images, (b) and (e) axial densities, which correspond
to the images, and (c) and (f) numerical solutions to the GPE with
the dashed lines that show the solution in the absence of a defect.
The inset trace shows the characteristic shape of the potential.
For all panels, a = 200 a0, N = 4 × 105, ωz = 2π × 5.0 Hz, and
ωr = 2π × 360 Hz.

However, in situ phase fluctuations may also arise from thermal
excitations in highly elongated BECs, and these can also
manifest as density fluctuations after time of flight [57]. Close
inspection of Fig. 14 reveals that deep density modulations
are present only in the downstream portion of the BEC (after
the first pass through the defect), consistent with the dark
soliton interpretation. Similar density fluctuations have also
been interpreted as dark solitons in an experiment by using a
moving defect and a stationary BEC [58].

0 ms

47 ms

(a)

60 ms

160 ms

200 ms

-0.5  0  0.5

240 ms

(b)

-0.5  0  0.5
Position (mm)

(a) (b)

FIG. 13. (Color online) Axial densities at various times during
a supersonic oscillation in the presence of (a) an attractive or (b) a
repulsive defect. The arrows are proportional to the instantaneous
velocity of the condensate. The vertical dashed lines denote the
location of the defect. For these data, a = 200 a0 and v0 = 13 mm/s;
(a) corresponds to N = 4 × 105, µ = 1.5 kHz, v0/c0 = 2, VD =
−0.8µ, ωz = 2π × 4.7 Hz, and ωr = 2π × 360 Hz; (b) corresponds
to N = 1 × 106, µ = 3 kHz, v0/c0 = 1.4, VD = 0.4µ, ωz = 2π ×
5.0 Hz, and ωr = 2π × 360 Hz.
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FIG. 14. (Color online) Density fluctuations produced, which
cross a repulsive defect. Absorption images after 4-ms time of flight.
The vertical dashed line denotes the location of the defect. The
experimental parameters are as stated in Fig. 13(b).

We have measured β as a function of both VD and v0, with
characteristic results presented in Fig. 15. Contrary to what
was observed for a disordered potential, we observe a critical
velocity vc below which the motion is undamped for both
the attractive and the repulsive defects. We find that the peak
damping for an attractive defect is significantly weaker than
for a repulsive one. Figure 16 presents measurement results of
β as a function of both VD and v0. For an attractive defect,
we find that vc/c0 ∼ 0.7 where vc depends only weakly on
VD . However, for a moderately strong repulsive defect, vc/c0

occurs significantly below 1 and depends strongly on VD . For
both attractive and repulsive defects, vc tends to c0 as |VD/µ|
is reduced to zero.

Once again, a model based on a local Landau criterion
is sufficient to explain the dependence of vc on VD . For
simplicity, consider a uniform density flow that impinges on
either a repulsive or an attractive Gaussian potential [54]. With
the assumption that the superfluid flow pattern is stationary,
the local density of the condensate near the defect must
be modified in a similar way to that shown in Fig. 12 for
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FIG. 15. (Color online) Velocity dependence of β induced by a
single Gaussian defect. (a) Attractive defect with (squares) VD/µ =
−0.8 or (circles) VD/µ = −0.3 and other parameters as stated in
Fig. 13(a) except with N = 8 × 105 and µ/h = 2 kHz. (b) Repulsive
defect with (squares) VD/µ = 0.4 or (circles) VD/µ = 0.2 and other
parameters as stated in Fig. 13(b). Both types of impurities show
critical behavior at low velocities as well as undamped motion at
large v0/c0. Note the difference in scale between damping induced
by an attractive vs a repulsive impurity. Vertical and horizontal error
bars are as described in Fig. 3.
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FIG. 16. (Color) Transport regimes of a BEC that travels through
a harmonic potential with a central Gaussian defect. Coordinates of
the black squares are the values of VD/µ and v0/c0 for the data
sets used to extract β/ωz from a fit to Eq. (5). The interpolated
color map and contour lines for β/ωz are derived from the measured
results. Dashed white lines show the local Landau critical velocity
as given by Eqs. (7) and (9). The attractive and repulsive cases are
qualitatively similar: superfluidity for v0/c0 
 1, increased damping
as v0/c0 → 1, and reduced damping for v0/c0 � 1. Damping induced
by an attractive impurity is an order of magnitude weaker than
for a repulsive one. Data with VD < 0 and VD > 0 correspond to
parameters in Figs. 13(a) and 13(b), respectively.

a static defect. For the repulsive case, the local density is
reduced near the defect, which results in a lower local speed
of sound. In addition, flux conservation requires that the local
condensate velocity increase in the low-density region near
the repulsive impurity to preserve the stationary flow pattern.
A corresponding argument can be made for the case of an
attractive defect. These effects serve to increase the local value
of v(z)/c(z) near a repulsive defect and decrease it for an
attractive one. As a result, excitations can be created near the
peak of the repulsive defect in a BEC with a c.m. velocity that
is significantly lower than the bulk speed of sound. For the
case of an attractive impurity, on the other hand, one expects
excitations to occur in the bulk condensate first, rather than
near the impurity, and, therefore, at a flow velocity near the
bulk speed of sound, as observed.

We quantify this picture, in the case of a repulsive defect,
by applying the local Landau criterion at the instant the center
of the BEC crosses the defect. In Ref. [44], the authors used
an effective 1D NLSE in the high-density regime to determine
the locus of points where the local condensate velocity v(z) is
equal to the local speed of sound c(z); this defines the curve,

vc

c0
=

(
1 − VD

µ

)5/2

, VD > 0, (7)

where VD/µ ≡ δn0/n0 is the fractional change in the peak
density at the peak of the repulsive defect. When v0/c0 < 1,
we can ignore effects of the axial Thomas-Fermi profile of
the condensate because A 
 RTF for our trap, where RTF

is the axial Thomas-Fermi radius. Equation (7) is plotted in
Fig. 16 when VD > 0 and is found to agree with the measured
vc for the range of VD explored experimentally. Therefore,
the observed reduction of the critical velocity below c0 is
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consistent with the local Landau critical velocity without
invoking more exotic mechanisms, such as vortex nucleation.
This is in contrast with several experiments that involve BECs
in less elongated configurations [6,7], as well as in superfluid
4He where nucleation of vortex lines and rings can result in
vc < vL [25].

In the case of the attractive defect, the density and, therefore,
c(z) are enhanced at the location of the defect and reduced only
slightly elsewhere. We find that the reduction in density in the
bulk due to the enhancement at the defect is less than 1%
for the strongest barriers used, which leads to an essentially
unperturbed speed of sound in the bulk. The ratio of the local
fluid velocity to the local speed of sound can then be found
by only considering the bare Thomas-Fermi profile, and is
given by

v(z)

c(z)
= v0

c0

(
1 − z2/A2

1 − z2
/
R2

TF

)1/2

, (8)

where, by using Eq. (4), v0/c0 = 2A/RTF. If 2A < RTF,
then v0/c0 < 1, and the local Landau criterion is satisfied
everywhere inside the condensate,

vc

c0
= 1, VD < 0, (9)

which implies that vc is independent of VD . Our measurements,
however, show that vc depends weakly on VD with vc/c0 → 1
only in the weak impurity limit. Our experimental results are
consistent with numerical simulations that use a 1D NLSE [44]
for which the local Landau criterion accurately describes the
repulsive impurity case but slightly overestimates vc in the
attractive case.

Figures 15 and 16 demonstrate that damping is significantly
suppressed deep into the supersonic regime. We observe
undamped motion when v0 is greater than a VD-dependent
upper critical velocity v+. Numerical simulations [42,44,59]
have shown that, for wide and smooth barriers (ξ 
 wz), the
emission of radiation from the defect in the form of phonons
and solitons can be very small for supersonic velocities.
In fact, it has been shown analytically that the radiation
emission rate resulting from a defect moving supersonically
through a condensate decreases exponentially with the ratio
ξ/wz [60]. Without emission of radiation, energy dissipation is
inhibited and the flow persists, even though Landau’s criterion
is violated. For the data presented in Figs. 12–17, ξ/wz ∼ 0.04,
well within the regime where supersonic nondissipative flow
is predicted. Experiments similar to ours have also shown a
reduction in soliton emission from a barrier that moves through
a condensate in the supersonic regime [58].

Therefore, we observe three distinct regimes of flow in the
single-defect system: subsonic superfluid (v0/c0 < 1), dissipa-
tive (v0/c0 ∼ 1), and supersonic nondissipative (v0/c0 > v+).
Figure 17 displays axial densities from in situ polarization
phase-contrast images at the instant the defect passes through
the peak of the condensate for the three different velocity
regimes. As expected, for the superfluid flow regime, the
axial density profiles look very much like the equilibrium
profiles of Fig. 12: there is an increase (decrease) in the
density at the location of the attractive (repulsive) defect.
In the dissipative flow regime, on the other hand, the flow
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FIG. 17. (Color online) In situ density distributions of a conden-
sate that passes through a Gaussian defect. These images are taken
at the instant the center of the BEC first crosses the defect. Rows
correspond to the three flow regimes: subsonic superfluid (v0/c0 < 1),
dissipative (v0/c0 ∼ 1), and supersonic nondissipative (v0/c0 > 1).
(a)–(c) Attractive defect with VD/µ = −0.85 and v0/c0 = 0.31,
v0/c0 = 1.0, and v0/c0 = 3.0, respectively. (d)–(f) Repulsive defect
with VD/µ = 0.65 and v0/c0 = 0.15, v0/c0 = 0.90, and v0/c0 = 2.0,
respectively. The arrows indicate the direction and the relative speed
of the condensate. For these data, all other parameters are as described
in Fig. 13.

patterns for VD > 0 show significant distortion, while for
VD < 0, there is little distortion, as previously discussed in
detail. Finally, in the supersonic nondissipative flow regime,
we observe a counterintuitive density inversion with respect to
the superfluid regime, where the attractive defect produces a
density depression, while the repulsive defect causes a density
peak.

The physical origin of this counterintuitive density inver-
sion can be understood by considering the behavior of the
gas at large v0. In this regime, as in the disordered case,
the Bogoliubov excitation spectrum, given by Eq. (2), is
dominated by the p2/2m term and, therefore, is dominated by
plane waves with wave number k = p/h̄ rather than phonons.
For this quasi-ideal gas, the drag should be determined by the
scattering of these plane waves off of the defect [54]. At high
velocities, scattering of these waves from the defect is greatly
suppressed, which leads to low dissipation. If we extend this
argument further and if we consider the atoms to be classical
particles, one expects the atoms to slow down in the presence
of the repulsive defect, which results in a density increase
near the defect, while the opposite is expected for an attractive
defect.

Density inversions similar to the ones presented here have
also been discussed in the context of dissipationless stationary
states at supersonic velocities [53,60–62] as well as sonic
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FIG. 18. (Color online) Oscillation of a weakly interacting BEC
in the presence of a repulsive defect, with a = 0.6 a0, N = 2.5 × 105,
µ/h = 44 Hz, VD/µ = 0.8, ωz = 2π × 4.7 Hz, ωr = 2π × 300 Hz,
and v0/c0 = 1.6. (a) C.m. position as a function of time (computed
as in Fig. 11), we find β/ωz = 0.03, (b) root-mean-square density
deviation from a Gaussian fit to the axial density distribution (see
text). The solid line shows the decay of the oscillation energy (in
arbitrary units) found from the fit in (a). (c)–(e) In situ axial density
traces and Gaussian fits at various oscillation times: (c) 0 ms, (d) 140
ms, at the second crossing of the defect, and (e) 1260 ms, after several
crossings of the defect. At increasingly large times, we find that the
large density modulations are accompanied by only a slight increase
of the axial size of the condensate.

black holes [63]. Under our experimental conditions, when
v0/c0 ∼ 1, the edge of the barrier can serve as a sonic event
horizon. Such systems have been proposed as possible candi-
dates with which to study tabletop astrophysics, where exotic
effects, such as Hawking radiation, should be observable.
Interestingly, in this system, the experimenter plays the role
of the so-called superobserver, by having access to the regions
both outside and inside the event horizon [63–66].

B. Weakly interacting regime

Figure 18 shows results of measurements of a weakly
interacting condensate (a = 0.6 a0), which oscillates in the
presence of a repulsive defect. Under these conditions, the
condensate is in the quasi-1D regime with µ/h̄ωr = 0.15. We
find that the axial density profile of the condensate becomes
increasingly modulated during the damped oscillation, consis-
tent with theory [42,55]. We compute the root-mean-square
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FIG. 19. (Color online) Velocity dependence of damping with a
repulsive defect. Circles correspond to a nearly noninteracting BEC
with a = 0.6 a0, µ/h = 31 Hz, c0 = 0.9 mm/s, and VD = 0.9µ.
Shot-to-shot variations in the position of the cloud limit the extraction
of β to v0 > 1 mm/s, which corresponds to v0/c0 > 1.1. Squares
correspond to data from Fig. 15(b) for comparison, a = 200 a0,
µ/h = 3 kHz, c0 = 9.2 mm/s, and VD = 0.4µ. Error bars are as
defined in Fig. 3.

deviation of the axial density distribution from a Gaussian
fit nfit as a proxy for the increased internal energy of the
condensate due to the density modulation,

� =
√

1

L

∫
L

[
n(z) − nfit(z)

nfit(z)

]2

dz, (10)

where we take the integration length L to be over the
central 70% of the condensate to minimize edge effects.
Figure 18(b) shows that � initially increases in time and
then saturates. The time-dependent increase in the density
modulation qualitatively matches the loss of oscillation energy.
Therefore, we conclude that the damping of the dipole mode is
caused primarily by the creation of in situ density modulations
in the cloud.

Results of measurements of the velocity dependence of the
damping by a repulsive defect with a = 0.6 a0 are shown in
Fig. 19. As was the case with disordered potentials, we find
that the timescale for damping in the quasi-1D regime with a
strong impurity strength is much longer than that observed in
the Thomas-Fermi regime with a weak impurity strength.

C. Dark soliton production in the weakly interacting regime

Of particular interest in the quasi-1D regime is the ability
to create and to observe long-lived dark solitons. These
nonlinear excitations have been previously created in BECs
with repulsive interatomic interactions through a variety
of means, which include direct phase imprinting [67,68],
spatially selective microwave transfer [69], slow light [70],
two-condensate interference [71,72], and, similar to the work
presented here, as a result of a BEC crossing a semipermeable
defect [58].

In general, the decay of dark solitons occurs as a result
of dynamical instability or as a result of dissipative dynamics
associated with the interaction of the soliton with quasiparticle
excitations of the BEC. However, it is known that dark solitons

033603-10



DISSIPATIVE TRANSPORT OF A BOSE-EINSTEIN . . . PHYSICAL REVIEW A 82, 033603 (2010)
A

xi
al

 d
en

si
ty

 (
ar

b.
 u

ni
ts

)

Position (µm)

(a)

(b)

(c)

-100 0 100

(d)

(e)

(f)

(g)

-100 0 100

(h)

FIG. 20. (Color online) Dark soliton formation. In situ axial
densities of BECs during the first (a)–(d) and fourth (e)–(h) passes
through a semipermeable defect. The defect is located at z = 0, and
its strength was adjusted to keep VD/µ ∼ 0.7. Oscillation amplitudes
were adjusted to keep v0 ∼ c0. (a), (e): a = 0.1 a0, N = 1.0 × 105,
µ/h = 5 Hz, ξ = 12.5 µm, ξs = 16(6) µm; (b), (f): a = 0.5 a0,
N = 2.2 × 105, µ/h = 30 Hz, ξ = 4.9 µm, ξs = 6.6(2) µm; (c),
(g): a = 1.7 a0, N = 2.6 × 105, µ/h = 77 Hz, ξ = 3.06 µm, ξs =
2.8(4) µm; (d), (h): a = 5.4 a0, N = 2.2 × 105, µ/h = 144 Hz,
ξ = 2.24 µm, ξs = 2.5(3) µm. The trap frequencies for these data are
ωr = 2π × 240 Hz and ωz = 2π × 4.75 Hz. The dashed lines show
fits to Eq. (11). We omit the fit in (d) for clarity. For comparison,
the thin dashed line in (a) is only the Gaussian portion of the fit.
Error bars for ξs are given by the standard deviation of a collection of
images.

can have very long lifetimes in the quasi-1D regime [73]. For
the most weakly interacting BECs presented here, µ/h̄ωr =
0.13, thereby making our system ideally suited to study long-
lived dark solitons.

We have studied the formation of deep in situ density
modulations in BECs for different values of a, with the
results shown in Fig. 20. Dipole motion is initiated after the
field is slowly ramped to a desired value near the scattering
length zero-crossing at 544 G. Panels (a)–(e) of Fig. 20 show
the cloud after 3/4 of a complete oscillation. The defect is
switched off after the first pass of the cloud, and the cloud is
imaged after it returns to the center of the trap after another
quarter period. Therefore, ∼100 ms elapses between the initial
interaction of the cloud with the defect, where the soliton is
created, and imaging. Deep density modulations, consistent
with the formation of stable dark solitons, are observed. For
comparison, panels (e)–(h) of Fig. 20 show the cloud after it
passes through the defect four times. The density modulations
in this case appear less monochromatic than in the single-pass
case, which suggests the presence of both linear (phonons) and
nonlinear (solitons) excitations. We extract the healing length
ξs by fitting the single-pass data in Fig. 20 to [74]

n(z) = Ae−z2/σ 2

[
1 − D sech2

(
z − z0

ξs

√
2

)]
, (11)

where A is the background density, σ is the size of the atomic
cloud, D is the depth of the soliton, z0 is the location of
the soliton, and ξs is the healing length. Through a variational
solution of the GPE, we can independently estimate the healing
length ξ by using the measured values of N , a, ωz, and ωr . The
results of this analysis are reported in Fig. 20. The average size
of the density dips is very nearly the healing length predicted
by the GPE estimations (i.e., ξs ∼ ξ ). This observation is
consistent with the formation of a downstream dispersive
shock, which consists of a train of dark solitons as a supersonic
BEC crosses a semipermeable barrier [42,44,53–56].

V. SUMMARY AND FUTURE DIRECTIONS

We have conducted comprehensive measurements of the
dissipation of superfluid flow in an elongated BEC subject
to either a disordered potential or a single Gaussian defect.
By measuring the velocity and disorder strength-dependent
damping parameter, we have characterized the breakdown
of superfluidity of a harmonically trapped cloud in both
the 3D Thomas-Fermi and the quasi-1D weakly interacting
regimes.

Our data largely support the validity of the Landau criterion
for a critical velocity above which the superfluid motion
is damped, as long as the criterion is applied locally. The
local criterion accounts for the inherent inhomogeneity of
trapped gases, as well as density modifications produced by
large defects. The only exception is for relatively strongly
attractive defects, where we find that vc decreases to vc ∼ 0.7c0

for VD/µ < −0.5. Dissipation is also found to diminish for
velocities greater than v+, which we associate with reduced
excitation of dark solitons and phonons.

Throughout the 3D Thomas-Fermi regime, the damping
is found to be well described by a universal relation, which
depends on the dimensionless defect strength VD/µ and
velocity v0/c0. The universal damping peaks at v0/c0 ∼ 1 for
any VD/µ and scales as (VD/µ)2 for all µ. As µ decreases,
the peak damping rate decreases as well, consistent with the
disappearance of the phonon portion of the excitation spectrum
as c0 → 0. Damping in the quasi-1D regime is qualitatively
different. In this case, we find, for fixed absolute VD and
v0, that β is independent of µ. In this regime, damping is
accompanied by fragmentation and spreading of the cloud,
with the damping monotonically increasing with VD/EK ,
where EK is the maximum single-particle kinetic energy.

A particularly intriguing possibility for the future is to
explore the transport properties of a weakly attractive gas.
In the case of a disordered potential, the opportunity to study
the transport properties of bright matter-wave solitons [75]
with the prospect to observe Anderson localization in such
systems exists [76,77]. For a single defect, there is also a
possibility for the creation of coherently split solitons or
solitonic Schrödinger’s cat states [78–80].
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