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1. Introduction

Lithium is an attractive atom for studies of quantum degenerate gases because its
two naturally occurring isotopes, °Li and 7Li, have opposite exchange symmetry
and have stable nuclei. Since ®Li is composed of an odd number of spin-1/2 parti-
cles (3 electrons, 3 protons, 3 neutrons), it is itself a half-integer composite particle
obeying Fermi-Dirac statistics. On the other hand, TLi with its extra neutron is a
composite boson. The phenomena exhibited by each isotope, therefore, should be
vastly different at ultra-low temperatures, where effects of quantum degeneracy
are manifested. For example, we have shown that "Li undergoes Bose-Einstein
condensation (BEC) [1], the paradigm of all quantum statistical phase transitions.
A gas of ®Li, conversely, cannot directly Bose condense, although they can un-
dergo a BEC-like phase transition in which particles form ‘Cooper pairs’. This
effect is responsible for electronic superconductivity and for superfiuidity of He.
In this chapter, we describe our experiments with ultracold lithium atoms.
These experiments include the first direct observation of the growth and collapse
of a condensate with attractive interactions, molecular spectroscopy of a Bose-
Einstein condensate, and sympathetic cooling of ®Li atoms by "Li atoms.

2. Interactions in Dilute Gases

One of the primary reasons for the intense interest in dilute Bose-Einstein con-
densates is that the interactions are weak, which facilitates comparison between
theory and experiment. A great simplification arises because the density of trapped
gases is usually low enough that three-body interactions can be ignored, and
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the two-body interaction potentials of the alkali-metal atoms have been deter-
mined quite accurately in recent years by photoassociative spectroscopy (Section
2.2). Furthermore, at ultra-low temperatures the de Broglie wavelength A is much
longer than the characteristic two-body interaction length, which is typically only
a few nanometers. When this is the case, the effect of the interaction can be Tepre-
sented by a single parameter, the s-wave scattering length a [2]. The magnitude of
a indicates the strength of the interaction, while the sign determines whether the
interactions are effectively attractive (a < 0) or repulsive (a > 0). The “diluteness
parameter”, nja|®, where n is the density, ranges from about 10~8 to 10~* in all
the alkali BEC experiments. This parameter may be a somewhat smaller for the
hydrogen BEC experiment [3], due to its much smaller scattering length.

2.1. MEAN-FIELD THEORY

The effects of interactions on the condensate have been studied using mean-field
theory [4]. In this approximation, the exact, many-body interaction Hamiltonian
is replaced by its mean value, resulting in an interaction energy U = ArchZan/m,
where m is the atomic mass [2]. For a gas at zero temperature, the net result of
the interactions and the confining potential can be found by solving the non-linear
Schrodinger (Gross-Pitaevskii) equation for the wave function of the condensate,

Y(r): ,
(—zﬁ—mVZ—FV(r)-I—U(r) —y)wzo (1)

Here p is the chemical potential, and V (r) is the confining potential provided
by the trap. In a spherically symmetric harmonic trap with oscillation frequency
, V(r) = 3mw?r?. The interaction energy U (r) is determined by taking n(r) =

().
2.2. PHOTOASSOCIATIVE SPECTROSCOPY

The interaction potentials for hydrogen and the alkali-metal atoms are all qualita-
tively the same, in that they have a repulsive inner-wall, a minimum that supports
vibrational bound states (except for the triplet potential of hydrogen), and a long-
range van der Waals tail. Their respective scattering lengths, however, differ enor-
mously in magnitude and in sign. This variation arises because of differences in
the proximity of the least-bound vibrational state to the dissociation limit. As with
the familiar attractive square-well potential, a barely bound or barely unbound
state leads to collisional resonances that produce very large magnitude scattering
lengths. Small changes in the interaction potential, therefore, may result in a large
change in the magnitude, or even a change of the sign of a. A difference in mass,
even when the interaction potential is the same, will give entirely different scatter-
ing lengths, as is the case with °Li and "Li. In the past few years, photoassociative
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Figure 1.  Schematic diagram of two-photon photoassociation. (Reprinted from Ref. 39 by
permission from Nature, copyright 2000, Macmillan Magazines Ltd.)

spectroscopy of ultracold atoms has proven to be the most precise method for
determining scattering lengths [5]. In one-photon photoassociation, a laser beam is
passed through a gas of ultracold atoms confined to a trap. As the laser frequency
is tuned to a free-bound resonance, diatomic molecules are formed resulting in
a detectable loss of trapped atoms. Since the intensity of the trap-loss signal is
sensitive to the ground-state wavefunction, useful information about the ground-
state interaction potential is obtained. The value of the scattering length is found
by numerically solving the Schridinger equation using the potential. This method
has been used to find the scattering lengths for Li, Na, K, and Rb [5].

A more precise method for finding scattering lengths is to probe the ground
state molecular levels directly since they are extremely sensitive to the binding
energy of the least-bound molecular state. We have used two-photon photoas-
sociation, as shown in Fig. 1, to directly measure this binding energy for both
stable isotopes of lithium, the bosonic isotope 7Li [6] and the fermionic isotope
811 [7]. In this method, a laser is tuned to near the free-bound transition as in
one-photon photoassociation, while the frequency of a second laser is tuned to
resonance between the bound excited state and a bound ground state. The fre-
quency difference between the two lasers gives the binding energy directly. This
technique has resulted in the most precisely known atomic potentials. Table I gives
the triplet and singlet scattering lengths for both isotopes individually, as well as
for mixed isotope interactions [7]. Two-photon spectroscopy of the ground-state
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has also been used recently to find the scattering lengths of Rb [8].

TABLEI Triplet and singlet scattering lengths in Bohr, for isotopically pure and mixed
gases of lithium. The singlet scattering lengths were determined from one-photon pho-
toassociative spectra, while the triplets were determined using the two-photon Raman
technique. The mixed case scattering lengths were calculated from the SLi; and Liy

potentials.
SLi L £ SLi/TLi
ar —2160 4250 —27.6+0.5 40.940.2
as 455425 33x£2 —-204£10

2.3. IMPLICATIONS OFa <0

For a repulsive gas (a > 0), a condensate will be stable and its thermodynamic
properties, such as its critical temperature 7, or its elementary excitation spectra,
can be calculated by a perturbation expansion in the small parameter na® [2]. For
a < 0, however, the situation is very different. Since U decreases with increasing
n, an untrapped (homogeneous) gas is mechanically unstable to collapse. It was
long believed, therefore, that BEC of a gas with attractive interactions is precluded
by a conventional phase transition into either a liquid or a solid [9, 10]. We did,
however, observe BEC in a gas of "Li [1]. The condensate occupation number N
was observed to be limited to a number well below the total population of atoms
in the trap (Section 4.1) [11], in contrast to observations made in a repulsive gas.
A numerical solution to Eq. (1) is found to exist only when Ny is smaller than a
limiting value N,, [12]. In effect, the zero-point kinetic energy of trapped atoms
provides a stabilizing influence. The limit can be understood as requiring that the
interaction energy U be small compared to the trap level spacing fiw, so that the
interactions act as a small perturbation to the ideal-gas solution. This condition
implies that N, is of the order £y /|a|, where £y = (h/mw)'/? is the length scale of
the single-particle trap ground state [13]. It is at first surprising that N,, increases
proportional to £, since it is known that BEC cannot occur in a homogeneous gas.
However, the density of the condensate, No/£3, tends to zero as £y — o, and so
there is a trade-off between number and density.

The stability of an attractive condensate can be further explored by a varia-
tional method [13, 14, 15]. Here the ground-state solution to Eq. (1) is assumed
to maintain the Gaussian form of the ideal gas solution, while the variational
parameter is the width £ of the Gaussian. By substituting this solution into the
energy operator given by the first three terms of Eq. (1), an energy functional H (£)
is obtained. For Ny < N, the harmonic trapping potential and the kinetic energy
terms produce a local minimum in H (£) which supports a metastable condensate,
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Figure 2. The condensate energy H, plotted in units of Ny#2 /m!fg. The upper curve corresponds
to No = 0.48 £y/|al, the middle curve to Ny = 0.68 £y/|al, and the lower curve to Ny = 0.87 £y/|al.
It is evident that a local minimum in H exists near £ = £ if Ny is sufficiently low, indicating that a
metastable condensate can exist. (Reprinted from Ref. 13).

as shown in Fig. 2. As N approaches N,,, the attractive interaction term causes the
depth of the minimum to decrease until it vanishes entirely for Ny > N,, [13]. An
exact numerical solution to the nonlinear Schrodinger equation, gives a value for
N, of 1250 for "Li in our trap, while the variational calculation with a Gaussian
ansatz gives a result only 15% greater. This is a definite prediction of the mean-
field theory that can be quantitatively checked. The results of our measurement of
N, are given in Section 4.1.

3. Apparatus and Methods for Making a BEC

In this section, we describe the main ingredients of the experiment: magnetic
trapping, evaporative cooling, phase-contrast imaging, and image analysis.

3.1. MAGNETIC TRAP

The apparatus used to produce BEC of "Li is described most completely in Ref.
[13]. A Zeeman slower is used to slow an atomic beam of lithium atoms, which are
then directly loaded into a magnetic trap. There is no magneto-optical trap used in
the experiment. The magnetic trap is unique in that it is made from permanent
magnets, as shown in Fig. 3 [16]. By exploiting the enormous field gradients
generated by rare-earth magnets, the resulting trap potential was made nearly
spherically-symmetric with a large harmonic oscillation frequency of ~ 150 Hz.
Since N,, is limited by the tightest trap direction [13, 17], the condensate density is
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Figure 3. Diagram showing the orientation of the cylindrical trap magnets for the permanent
magnet trap. The letters indicate the inner tip magnetizations of the NdFeB cylinder magnets. The
tip-to-tip magnet spacing is 4.45 cm. The structure around the magnets is a magnetic stainless steel
yoke that supports the magnets and provides low reluctance paths for the flux to follow between
opposite signed magnets. (Reprinted from Ref, 16),

maximized for a spherically symmetric potential. By actively stabilizing the tem-
perature of the magnets the fields are made highly stable, allowing for relatively
repeatable and stable experimental conditions. The bias field at the center of the
trap is 1004 G.

3.2. EVAPORATIVE COOLING

After about 1 s of loading, ~ 2 x 10® atoms in the doubly spin-polarized F = 2,
mp = 2 state are accumulated. These atoms are then laser cooled to near the
Doppler cooling limit of 200 uK. At this number and temperature, the phase
space density, nA%, is still more than 105 times too low for BEC. The atoms are
cooled further by forced evaporative cooling. The hottest atoms are driven to an
untrapped ground state by a microwave field tuned just above the (F =2, mp=
2) — (F = 1,mp = 1) Zeeman transition frequency of approximately 3450 MHz.
As the atoms cool, the microwave frequency is reduced at a rate which maximizes
the phase-space density of the trapped atoms [18]. The optimal frequency vs. time
trajectory depends on the elastic collision rate and the trap loss rate. The elastic
collision rate nov is roughly 1 s~!, with cross-section o = 8ma? ~ 5 x 10~13 cm2.
The collision rate is approximately constant during evaporative cooling. We have
recently measured the loss rate due to collisions with hot background gas atoms
to be < 10™* s™!, and the inelastic dipolar-relaxation collision rate constant to
be 1.05 x 10~ em? s~! [19]. From the low background collision loss rate, we
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Figure 4. A schematic of the imaging system used for in situ phase-contrast polarization imaging.
A linearly polarized laser beam is directed through the cloud of trapped atoms located at A. The
probe beam and scattered light field pass out of a vacuum viewport B, and are relayed to the primary
image plane G by an identical pair of 3-cm-diameter, 16-cm-focal-length doublet lenses C and
F. The light is then re-imaged and magnified onto a camera J by a microscope objective H. The
measured magnification is 17.5, and the camera pixels are 24 ym square. A linear polarizer E is
used to cause the scattered light and probe fields to interfere, producing an image sensitive to the
refractive index of the cloud. (Reprinted from Ref. 13).

estimate the background gas pressure in the apparatus to be < 10~!? torr. Quan-
tum degeneracy is typically reached after 120 seconds, with N =~ 10° atoms at
I ~ 700 nK. Lower temperatures are reached by extending the cooling time or by
the application of a short, deep microwave quench pulse.

3.3. PHASE-CONTRAST IMAGING

After evaporative cooling, the spatial distribution of the atoms is imaged in situ
using an optical probe. Since the single-particle harmonic oscillator ground state
of our trap has a Gaussian density distribution with a 1/e-radius of only 3 um,
a high-resolution imaging system is required. Because the optical density of the
atoms is sufficiently high to cause image distortions when probed by near-resonant
absorption [20], we instead use a phase-contrast technique with a relatively large
detuning from resonance A = 4250 MHz. Our implementation of phase-contrast
imaging, shown schematically in Fig. 4, is both simple and powerful. It exploits
the fact that atoms in a magnetic field are birefringent, so the light scattered by
the atoms is polarized differently from the incident probe light. A linear polarizer
projects the polarization of the scattered and probe light onto a common axis,
which causes them to interfere. Since the phase of the scattered light is equal to
o/4A, where o is the on-resonance optical density, the spatial image recorded
on the CCD camera is a representation of the integrated atomic column density.
Phase-contrast polarization imaging is described more fully in Ref. [13].
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3.4. DATA ANALYSIS

The cylindrical symmetry of the trap is exploited to increase the signal to noise
ratio of the data. This is accomplished by averaging the data around the cylindrical
trap axis. Image profiles are obtained from the averaged data and the profiles are
fit with a model energy distribution to determine N, T', and Ny. If the gas is in
thermal equilibrium, then any two of these quantities completely determine the
density of the gas through the Bose-Einstein distribution function. If the gas is not
in thermal equilibrium, such as is the case when the condensate is undergoing the
growth/collapse cycles discussed in Section 5, then a more complicated function
is required. Using a model based on the quantum Boltzmann equation [21], we
find that atoms in lowlying levels quickly equilibrate among themselves and the
condensate, and that highenergy atoms are well thermalized among each other.
Therefore, a three parameter function that includes two chemical potentials cor-
responding to these two parts of the distribution, and a temperature representing
the high-energy tail of the distribution, is sufficient to describe the expected non-
equilibrium distributions and to determine Ny [22]. The fit yield an average re-
duced %2 of very nearly 1, indicating that the model is consistent with the data
within the noise level. The procedure was tested by applying it to simulated data
generated by the quantum Boltzmann model, and also by comparing the anal-
ysis of experimental images of thermalized clouds using both equilibrium and
nonequilibrium models. From these tests, the systematic error introduced by the
nonequilibrium model is estimated to be not more than +60 atoms. The most
significant uncertainty in Ny is the systematic uncertainty introduced by imaging
limitations. While the imaging system is nearly diffraction limited, the resolution
is not negligible compared to the size of the condensate, and imaging effects must
be included in the fit [20]. Imaging resolution is accounted for by measuring the
point transfer function of the lens system and convolving this function with the
images. Uncertainties in the resolution lead to a systematic uncertainty in Ny of
+20% [22].

4. Experimental Results

4.1. LIMITED CONDENSATE NUMBER

Bose-Einstein condensation of a gas with attractive interactions is indeed possible,
as can be seen from the images of Fig. 12. These three images correspond to
N 270,000, but the middle image fits to Ny = 1210 atoms, while the upper image
fits to Ny = 40 atoms. The condensate is clearly visible even though Ny << N. The
excellent signal to noise ratio evidenced here accounts for our high sensitivity to
small values of Np. In all cases, Ny is less than 1250 atoms to within the experi-
mental uncertainty, even for N as large as 10° atoms. Fig. 5 shows histograms of
measurements of Ny for several delay times following a deep evaporation quench
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Figure 5. Histograms of condensate occupation number. (Reprinted from Ref. 22).

pulse. These histograms are generated from hundreds of independent measure-
ments of Ny, each of which is the result of loading the trap, evaporatively cooling
the gas, flashing the probe pulse to record a phase-contrast image, and finally,
analyzing the image to extract the value of Ny. These distributions demonstrate
the fact that Ny is limited to a value near 1200 atoms. This value is consistent
with, and therefore constitutes a quantitative test of mean-field theory [12].

5. Dynamics of Condensate Growth and Collapse

5.1. THEORY

Given that the condensate is unstable for Ny > N, it is natural to ask how this
limit is enforced: what happens when atoms are added to the condensate and
Ny grows to near N,,7 Insight into this question can be gained by reference to
Fig. 2, which shows an energy barrier in configuration space for Ny < N,,. The
relevant coordinate in this figure is the spatial size of the condensate, and changes
in this coordinate can be viewed as the motion of a quasi-particle in an effective
potential. As Ny approaches N, the condensate becomes unstable to collective
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collapse [15, 17,23, 24, 25, 26], which can be initiated by either thermal excitation
over the energy barrier, or by macroscopic quantum mechanical tunneling through
it. The condensate has only one unstable collective mode, which is the breathing
mode in the case of an isotropic trap [27, 28]. Thermal excitation of the breathing
mode with sufficient amplitude for the condensate size to become small enough
to sample the inner region of the potential, will lead to collapse. The rates for this
thermal process and for quantum mechanical tunneling have been calculated for
various relevant temperatures and are plotted in Ref. [21].

Experimentally, condensate growth is initiated by cooling the gas below the
critical temperature T, for BEC. For attractive interactions, Ny grows until the
condensate collapses. During the collapse, the condensate shrinks on the time
scale of the trap oscillation period [17, 21]. As the density rises, the rates for
inelastic collisions such as dipolar decay and three-body molecular recombina-
tion increase [19]. These processes release sufficient energy to immediately eject
the colliding atoms from the trap, thus reducing Ny. The ejected atoms are very
unlikely to further interact with the gas before leaving the trap, since the density
of noncondensed atoms is low. As the collapse proceeds, the collision rate grows
quickly enough that the density remains small compared to a2 and the condensate
remains a dilute gas [21, 29)].

The physics determining both the stability condition and the dynamical pro-
cess of collapse of the condensate bears some similarity to that of a star going
supernova [30], even though the time, length, and energy scales for these two
phenomena are very different. In the stellar case, the stability criterion is provided
by a balance between the pressure due to the quantum degeneracy of the electrons
within the star and gravitational attraction. If the mass of the star exceeds the
stability limit [31], the star collapses, releasing nuclear energy and triggering a
violent explosion. In contrast to the stellar case, the condensate regrows after a
collapse as it is fed by collisions between thermal atoms in the gas.

Both the collapse and the initial cooling process displace the gas from thermal
equilibrium. As long as Ny is smaller than its equilibrium value, as determined
by the total number and average energy of the trapped atoms, the condensate will
continue to fill until another collapse occurs. This results in a cycle of condensate
growth and collapse, which repeats until the gas comes to equilibrium with some
Ny < N,,. Figure 6 shows a typical trajectory of Ny in time, calculated using
the quantum Boltzmann equation, for our experimental conditions [21]. In this
calculation we assume that N is reduced to zero when a collapse occurs, on the
basis of the model proposed in Ref. [21].

The non-linear Schrédinger equation (Eq. (1)) has been used to describe many
wave-collapse phenomena occurring in classical wave physics. Some of these phe-
nomena are the collapse of Langmuir waves in plasmas [32], and self-focusing of
light waves propagating in a medium with a cubic non-linearity [33]. Because of
this far-ranging applicability there is an extensive literature devoted to the solution



QUANTUM DEGENERACY IN LITHIUM GASES 51

1400

1200

1000

o
-
n
w
&

800

o

F=]
600

400

200

oLy v s -

0 10 20 30 40 50 60

Time (s)
Figure 6. Numerical solution of the quantum Boltzmann equation, showing evolution of conden-
sate occupation number. A trapped, degenerate 7Li gas is rapidly quenched at 1 =0 to a temperature
of about 100 nK and a total number of 40,000 atoms. The gas then freely evolves in time. The inset

shows an expanded view of the early time behavior on the same vertical scale. (Reprinted from Ref.
22).

of the non-linear Schrodinger equation under various conditions. Kagan ef al. and
others have begun to apply some of this accumulated experience to the description
of the collapse of a condensate, including both growth and non-linear loss [29, 34].
However, a complete theoretical description of the growth and collapse process,
accurate at finite temperature, is an extremely complicated problem that has not
yet been fully solved.

5.2. EXPERIMENT

We have obtained indirect experimental evidence for the growth/collapse model,
which will be presented in this section. In Section 6.2, we will describe a direct
observation of growth/collapse dynamics that was made possible by dumping the
condensate using a molecular transition.

Although phase-contrast imaging can in principle be nearly nonperturbative
[35], it is not possible to reduce incoherent scattering to a negligible level and
simultaneously obtain low enough shot noise to measure small values of Ng accu-
rately. Each atom therefore scatters several photons during a probe pulse, heating
the gas and precluding the possibility of directly observing the evolution of Ng
in time as in Fig. 6. This limitation cannot be overcome by repeating the experi-
ment and varying the delay time T between the microwave quench pulse and the
probe, because the evolution of Ny is made unrepeatable by random thermal and
quantum fluctuations in the condensate growth and collapse processes, as well
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Figure 7. Distribution of condensate number measured for T = 90 s. No condensate is expected at
this long time, so the width of the distribution is a direct measure of the statistical noise. The noise
is small compared to the width of the distributions for earlier times, when a condensate is present.

as experimental fluctuations in the initial conditions. Because of this, the values
of Ny occurring at a particular © are expected to vary as different points in the
collapse/fill cycle are sampled. We have observed such variations by measuring
Np for many similarly prepared samples at several values of T. The results are the
histograms shown in Fig. 5. For small T, N ranges from near zero to about 1200
atoms, as expected if the condensate is alternately filling to near the theoretical
maximum and subsequently collapsing. At having only small Ny values at T = 60
s. The variations in Ny are uncorrelated with changes in N, T, probe parameters,
imaging model parameters, and goodness of fit. The statistical noise in our mea-
surement of Ny is much less than the width of the measured distributions. This is
demonstrated by Fig. 7, which shows the histogram corresponding to t=90s, a
time sufficiently long that no condensate is expected. The distribution for v = 90
s, therefore, is a direct measure of the noise in measuring Np: =60 atoms. Since
no other mechanism has been proposed to explain the observed variations in the
distributions shown in Fig. 5, we consider the observation of these variations to
strongly support the growth/collapse model.

The condensate growth and collapse cycle is driven by an excess of noncon-
densed atoms compared to a thermal distribution. This excess can be examined
directly. From N and 7, the critical number for the BEC transition, N, is cal-
culated and the ratio N/N, plotted as a function of delay time in Fig. 8. The
ratio, which is a measure of phase-space density, decays according to a power law,
which signifies that a nonlinear process governs equilibration. This nonlinearity
is reasonable since the rate of decay of the excess atoms should depend both on
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Figure 8. Relaxation of the gas to equilibrium following a rapid quench pulse at v = 0. The
data from Fig. 5 was used to make this graph. The total number of atoms N and temperature T
were used to determine N /N, where N = 1.2(kT / fun)*. The points represent averages of several
measurements and the errors bars are standard deviations. The dashed line approximately denotes
where equilibrium is reached. The solid line is an empirical fit. (Reprinted from Ref. 22).

the excess number and on the collision rate, which in turn depends on N and T'.
Since Nyp << N, equilibrium is reached when N/N, ~ 1, which occurs at T~ 50
s. This time is consistent with the delay required to accurately fit the image data
with an equilibrium model, and with the results of the quantum Boltzmann model.
Comparison of Figs. 5 and 8 shows that the equilibration time is also consistent
with the changing shape of the measured histograms. This further strengthens the
conclusion that the variations in Ny are related to the growth and collapse of the
condensate during the equilibration process, since the distribution of Ny values
changes when the population imbalance driving condensate growth is eliminated.

6. Molecular Spectroscopy of a Bose-Einstein Condensate

The ability to cool and trap atoms has enabled many new discoveries in many-
body physics and in low-energy collision physics over the past few years. The
same capabilities have not, however, been extended to molecules despite strong
motivations to do so. Ultracold trapped molecules might, for example, lead to
the extension of Bose-Einstein condensation to larger and more complex sys-
tems, or to the ability to coherently control chemical reactions. As with atoms,
much greater understanding of interparticle interactions, both atom-molecule and
molecule-molecule, could be gained through spectroscopic studies involving ul-
tracold molecules.
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Figure 9. Two-photon photoassociation signal for total trap population. The total number of
atoms remaining after a photoassociation pulse is normalized to measurements in the absence of
photoassociation.

6.1. SPECTROSCOPY

One way to produce ultracold trapped molecules is to photoassociate ultracold
trapped atoms. The two-photon technique used to determine the scattering lengths
of lithium, shown in Fig. 1 can also be used for this purpose. The frequency
difference w; — w; between the two lasers is tuned to the binding energy, Ep, of a
vibrational level of the ground-state of the diatomic molecule. In the previous scat-
tering length experiment, the gas was confined to a magneto-optical trap (MOT)
at a temperature of 1 mK [6]. In the current experiment, the gas is much colder,
< 1 uK, and has undergone Bose-Einstein condensation. Furthermore, since the
new experiment is performed in a magnetic trap using spin-polarized atoms, any
molecules that are produced will have magnetic moments, and therefore, may
be trapped. A similar experiment was recently performed using a Bose-Einstein
condensate of rubidium atoms, and the effect of atom-molecule interactions was
observed in the molecular spectrum [36].

Since the atoms are extremely cold and the molecules may be relatively long-
lived, the two-photon transition linewidth is potentially very narrow. In order to
realize this potential sensitivity, two extended-cavity diode laser systems were
phase-locked, with a resulting relative linewidth of under 1 Hz.

Fig. 9 shows a spectrum when N =~ 10 and 7 ~ 700 nK. Under these con-
ditions, the gas is quantum degenerate, although because of the attractive inter-
actions, Ny is always less than ~ 1250 atoms. The signal shown in Fig. 9 is the
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total number of atoms remaining following a pulse of the photoassociating light.
The spectrum is distinctly asymmetric. In agreement with the Wigner threshold
law [37], the high energy side of the line is broadened by the thermal energy
distribution, e~E/*T | while the low-energy side is very sharp, having a linewidth
of less than 3 kHz.

Fig. 10 shows another spectrum, but in this case, the signal is the number
of remaining condensate atoms rather than the remaining total number. The gas
is quenched before the photoassociation pulse, causing the condensate to grow.
Since the condensate is fed by thermal atoms, they also contribute to the con-
densate signal. Figure 10, therefore, is a direct measurement of the entire energy
distribution, including the condensate itself. The condensate peak is extremely
narrow, its width being ~ 250 Hz. There are several possible sources of broad-
ening. The laser beam of frequency w, (Fig. 1) can induce a transition from
the ground-state vibrational level, v = 10, to the vibrational level v’ of the elec-
tronically excited state which serves as the intermediate state for the two-photon
transition. Although the lasers are detuned by > 100 MHz from this intermediate
state, off-resonant excitation is possible, and spontaneous emission can occur.
A second source of broadening arises from the mean-field interaction between
the molecules and the inhomogeneously distributed atomic condensate [36]. And
finally, the v = 10 level itself may be unstable due to vibrational relaxation col-
lisions between molecules and atoms. The rate for this process has never been
measured, and theoretical estimates are extremely difficult and are available only
for collisions between H> and H [38]. From the observed width of the condensate
feature, we obtain an upper limit of 2 x 10719 cm?® s~! for the rate constant for
vibrational relaxation collisions between Li, (v = 10) and Li atoms.

6.2. DIRECT OBSERVATION OF GROWTH AND COLLAPSE

Since accurate measurements of small values of Ny necessarily destroy the con-
densate, it has not been previously possible to observe the condensate dynamics in
real time. However, we have now directly observed the initial growth and collapse
of a Bose-Einstein condensate by using the two-photon transition to dump the
condensate [39]. Because of the high spectral resolution of the two-photon tran-
sition, the condensate can be ‘surgically’ removed from the energy distribution,
while only minimally affecting the thermal atoms. This synchronizes the growth
and collapse cycles for different experiments at a particular point in time. The
subsequent growth/collapse dynamics are then obtained by repeating the experi-
ment and measuring Nj at different delays following the dump pulse. In a recent
experiment with essentially pure condensates of ®>Rb atoms, a magnetically tuned
Feshbach resonance was used to suddenly switch the interactions from repulsive
to attractive, thereby inducing a collapse at a specified time [40]. In that exper-
iment, condensates are produced with Ny far greater than the stability limit, and
consequently with high initial energy. In contrast, for the present experiment, the
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Figure 10. Two-photon photoassociation signal for condensate. The signal is number of remaining
condensate atoms following a photoassociation pulse. The narrow peak at low-energy arises from
probing the condensate directly.

collapse occurs with Ny below the maximum number by macroscopic quantum
tunneling or thermal fluctuation. Furthermore, the condensate coexists with a gas
of thermal atoms, allowing the kinetics to be probed.

In order to stimulate rapid growth and collapse conditions, a 100 ms duration
microwave quench pulse is applied following evaporative cooling. This pulse re-
moves ~ 80% of the atoms, leaving all but the coldest ~ 10° atoms. This quench
pulse leaves the gas far from thermal equilibrium, and if left to freely evolve, the
condensate will alternately grow and collapse many times for a period of ~ 10
s, as shown in Fig. 6. After a delay of either 3 or 5 s following the microwave
quench pulse, a light pulse consisting of two co-propagating laser beams tuned to
the two-photon transition dumps the condensate. Once in the molecular state, the
laser of frequency w; can stimulate a single-photon transition to the intermediate
level v/ (Fig. 1), which can then spontaneously decay into a state of two energetic
atoms that escape the trap. This method for removing atoms is very energy specific
since the observed two-photon linewidth of 250 Hz is much less than the ~ 5 kHz
thermal energy spread of the trapped atoms. In particular, the condensate may be
selectively removed without significantly affecting the remaining atoms.

Following the light pulse, the gas is allowed to freely evolve for a certain
time, at which point a destructive measurement of Ng is made. Figure 11a shows
the dynamical evolution of the condensate following a light pulse whose duration
is adjusted to reduce Ny to an initial value ~ 100 atoms. Ny increases immediately
after the light pulse as the condensate is fed via collisions between noncondensed
thermal atoms, and Ny reaches a maximum value consistent with the expected
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Figure 11. Condensate growth and collapse. (Reprinted from Ref. 39 by permission from Nature,
copyright 2000, Macmillan Magazines Ltd.).

upper limit of 1250 atoms. A collapse is clearly indicated by the subsequent re-
duction in Ny. After the collapse, Ny grows again, since the gas is not yet in thermal
equilibrium. The images shown in Fig. 12 are representative images taken from
the data in Fig. 11a for the specified delay times. The central peak, most clearly
visible at 450 ms delay, corresponds to the condensate.

The condensate growth rate may be adjusted by varying the duration of the
light pulse. By reducing the duration, fewer atoms are removed from both the
condensate and from the low-energy thermal atoms that directly contribute to
condensate growth, and consequently the growth rate increases. This is shown in
Fig. 11b, where two secondary peaks are now discernable. For Fig. 11c, the light
pulse duration is lengthened, causing more atoms to be removed, and slowing the
rate of growth.
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Figure 2. Phase-contrast images. These images were selected from those used to construct Fig.
I1a. The fitted values of Ny are 40, 1210, and 230 atoms for the upper, middle, and lower im-
ages, respectively. (Reprinted from Ref. 39 by permission from Nature, copyright 2000, Macmillan
Magazines Ltd.).

Each data point in Fig. 11 is the mean of five separate measurements of Nj.
Consequently, these data represent an average of many trajectories whose initial
phase and rate of growth differ slightly. The results are analyzed by using the
quantum Boltzmann equation. The lighter curves shown in Fig. 13 are a sample
of simulated trajectories which include the effect of the microwave quench pulse
and the light pulse. The variation in condensate growth following the light pulse
is mainly the result of slight differences in initial conditions that lead to varia-
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Figure 13.  Simulation of condensate dynamics. The two-photon light pulse is applied at 0 delay

time. (Reprinted from Ref. 39 by permission from Nature, copyright 2000, Macmillan Magazines
Ltd.).

tions in the energy distribution of atoms in the trap. Additionally, the stochastic
nature of the collapse process, which causes each collapse to occur at a slightly
different value of Ny, contributes to dephasing of different trajectories. The heavy
line represents the average of 40 trajectories obtained by running the simulation
several times with slightly different initial conditions. In the simulations, Ny is set
to 200 atoms immediately following the light pulse in order to achieve the best
agreement with the histograms of Fig. 5. The only adjustable parameter in the
simulations is the fraction of thermal atoms lost within the spectral width of the
two-photon transition.

The simulation results agree well with the data in several respects. The data in
Fig. 11b show that each subsequent peak following the initial growth is slightly
lower, as the trajectories corresponding to each individual measurement dephase
from one another. This dephasing causes the maxima (minima) to occur at smaller
(larger) values of Ny than for any individual trajectory. This behavior is seen in the
simulation average shown in Fig. 13, confirming our understanding of the role of
averaging in these measurements.

6.3. GROWTH OF THE CONDENSATE

Condensate growth should be affected by the quantum statistical effect known as
Bose enhancement: the condensate growth rate scales with the occupation number
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Np. This would lead to an exponentially increasing growth rate, which is, however,
neither observed in the data nor predicted by the quantum Boltzmann equation
model. For the conditions shown in Fig. 11c, for example, both the model and
the data show a saturation in the growth rate when Ny becomes larger than ~ 150
atoms. An analysis of the distribution of atoms among the trap energy levels in
the model simulations indicates that the condensate is fed mostly by collisions
between atoms with the lowest energies. Further, this analysis indicates that when
the low-energy population is depleted, the growth is limited by the rate for non-
Bose-enhanced ‘trickle-down’ collisions between high-energy atoms. Owing to
our high sensitivity to small values of Ny, the very early stages of condensate
growth following the dump can be observed, illuminating this subtle, yet impor-
tant, departure from the pure Bose enhancement prediction. The first observation
of condensate growth [35] could not detect small values of and therefore was not
sensitive to the initial stages of growth.

7. Degenerate Fermi Gas of °Li

An exciting new direction in the ultra-cold atom field is to study a quantum degen-
erate gas composed of fermions rather than bosons. A gas of fermionic “’K atoms
has recently been cooled to degeneracy [41]. We have initiated an experiment to
produce an ultra-cold gas of fermionic °Li atoms. As with the Bose gases, much
of the interesting physics has to do with the interactions between atoms. °Li is
particularly intriguing because, by a fluke of nature, the interaction between two
atoms is enormously large and attractive (Table I) [7], enabling perhaps, the first
observation of a Bardeen-Cooper-Schrieffer (BCS) phase transition to a gaseous
superfluid state [42, 43].

7.1. BCS PHASE-TRANSITION

The BCS theory was developed to explain superconductivity and has also been
applied to superfluid *He. The fundamental effect underlying these phenomena is
the pairing of particles, known as ‘Cooper pairing’. In 1980, Leggett considered
whether such a transition could be observed in a deuterium gas [44]. He showed
that the transition temperature T ~ (5Er /3kg) exp [—=n / (2kr|a]) — 1], where Ef
is the Fermi energy, kr is the Fermi wave number, and a is the s-wave scatter-
ing length (a =~ —7ap), is way too low for there to be any hope of seeing the
transition in the gas phase in deuterium. However, Stoof et al. recently pointed
out that ®Li is the ideal candidate for such an experiment, given that a is over
300 times larger than for deuterium (Table I) [42, 43]. With 200,000 atoms, a
number with which we are able to produce degenerate gases of ’Li, the simple
expression above gives an experimentally achievable 7, =~ 25 nK. Because of the
Pauli principle, realization of s-wave pairing requires a mixture of two spin-states.
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The F =3/2, mp =3/2 and F = 3/2, mp = 1/2 mixture is one possibility as it
interacts via the large triplet scattering length. However, this mixture is unstable
to spin-exchange collisions for reasonable magnetic field strengths [42]. We in-
tend instead to use a magnetically-tuned Feshbach resonance to tune the sign and
strength of the resonance. The energetically lowest two states of the hyperfine
manifold, F = 12, mp = 12 plus F = 12, mp = —12, and the second and third
lowest states, F = 12, mp = —12 plus F = 3/2, mp = —3/2, are predicted to
exhibit Feshbach resonances near 800 G [45].

7.2. EXPERIMENT

The apparatus and techniques that we use to produce a degenerate gas of °Li are
similar to those used for 7Li (Section 3), except that a cloverleaf-type electro-
magnetic trap [46] is used rather than a permanent magnet trap. The primary
difference between the boson experiments and the fermion experiment arises be-
cause of the Pauli exclusion principle, which forbids identical fermions from
interacting via an s-wave channel. This fact complicates the usual evaporative
cooling technique used so successfully with Bose gases, because of the inability
of identical fermions to undergo the necessary thermalization collisions. We cir-
cumvent this difficulty by cooling the °Li atoms ‘sympathetically’ [47, 48] via
their interactions with evaporatively cooled "Li atoms. This adds complexity to
the experiment because both isotopes must be simultaneously trapped.

We have recently cooled magnetically trapped SLi atoms below the Fermi
temperature. The magnetic trap is loaded by transferring both ®Li and "Li atoms
from a dual species magneto-optical trap (MOT), which in turn is loaded from
a laserslowed thermal atomic beam using the Zeeman slowing technique [49].
Approximately 10'° 7Li atoms and 10® °Li atoms are loaded into the MOT at
a temperature of 500 K. Of these, ~ 10% are transferred to the magnetic trap.
Fig. 14 shows absorption images of "Li on the left and ®Li on the right. Although
the number of atoms is different, each image corresponds to temperatures of
somewhat less than Tr. The time between corresponding °Li and 7Li images is
less than 1 s. The spatial size of the ®Li atom cloud is distinctly larger than the
'Li cloud, especially at the lowest temperature. Other than the 15% difference in
trap frequency between the isotopes, the size difference might be a manifestation
of quantum statistics, which tends to shrink the Bose distribution, while enlarging
the Fermi distribution.

7.3. FUTURE EXPERIMENTS

Realization of the BCS phase-transition will require the atoms to be cooled far
below 7. Our plan is to transfer the magnetically trapped 6Li atoms to an optical
dipole trap in the lowest two hyperfine levels. The Li atoms can be first removed
using a microwave spin-flip transition. Once in the optical trap and in the two-
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Figure 4.  Sympathetic cooling of fermionic °Li below Tr. The "Li is evaporatively cooled
while the ®Li is sympathetically cooled via collisions with 7Li. The three different temperatures
correspond to three separate evaporation cycles. A separate laser beam is used to image each isotope.

state mixture, the ®Li atoms can be directly evaporated by lowering the optical
potential.

There are several possible manifestations of the BCS phase-transition that we
will look to as signatures, but there is opportunity for much more theoretical work
to fully understand the implications. Perhaps the best possibility is to optically
detect the presence of Cooper pairs [50, 51, 52]. Our idea is to image the Fourier
plane of the density distribution of the gas, which should be sensitive to the mo-
mentum pair-distribution function [50]. Calculations show that the length scale
of the pair correlation function is much smaller than the size of the trapped atom
cloud. The presence of pairs should result in large angle scattering that could be
detected using the usual imaging techniques developed to image Bose-Einstein
condensates of trapped atoms.

8. Conclusions and Outlook

The opportunity to study quantum degenerate gases is very exciting. The isotopes
of lithium are particularly interesting because the bosonic isotope has attractive
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interactions, which lead to collective collapse, while the fermionic isotope has an
enormously large attractive interaction, which may provide the means to observe
a BCS phase transition to a gaseous superfluid state.
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