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Chapter 3
THE FERMI GASES AND SUPERFLUIDS:
EXPERIMENT AND THEORY

Kathryn Levina and R. G. Huletb
aJames Franck Institute, The University of Chicago, Chicago, IL 60637
bDepartment of Physics and Astronomy, Rice University, Houston, TX 77005

1. INTRODUCTION

The Fermi gases and the Fermi superfluids represent a new class of condensed matter
“materials.” Aside from their neutrality and the fact that they appear in confined geome-
tries (traps), they possess many essential features found in strongly correlated systems.
Adding to the excitement is the fact that these systems are highly tunable. We will see
below that one can dial-in the strengths of interactions (both repulsive and attractive), the
size and geometry of the (optical) lattice, spin polarizations, as well as other features. The
milestones in this discovery phase were the creation of a weakly interacting degenerate
Fermi gas (1999), the observation of a strongly interacting degenerate Fermi gas (2002),
the formation of dimers of fermions (2003), Bose–Einstein condensation (BEC) of these
dimers (late 2003) and finally, condensation of fermionic pairs (2004). Many challenges
were met and surmounted in the process and within a remarkably short period of time,
researchers were able to observe a new form of “high temperature” superconductivity
(in the sense of large Tc/EF ) and to develop a set of tools to characterize this new state
of matter. The available set of tools is equally remarkable. The experimental complexity
of these ultracold Fermi gases cannot be overstated. It is not possible to use traditional
thermometers to measure temperature, nor attach leads on a sample (in a current–voltage
set up) to measure the superconducting gap. Nevertheless, the experimental community
has devised ways of doing these analog-condensed matter experiments, as well as the
analog of photoemission, transport, neutron scattering, and “magnetic field” experiments.
We touch on all of these briefly in this chapter.

The extensions of these experiments to optical lattices will be discussed in Chapter 5.
But even in studies of trapped gases without lattices, which are the focus here, there
are exciting opportunities for insights into many physics subdisciplines. This is based on
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the interest in (i) the strong interaction limit, known as the unitary gas (see Chapter 6)
and (ii) the related smooth evolution of superfluidity from fermionic (BCS) to bosonic
(BEC). Interest in the first of these has captured the attention of scientists who also work
on quark–gluon plasmas, as well as in nuclear and astrophysics. The BCS-BEC crossover
has captured the attention of condensed matter physicists who contemplate implications
for high-temperature superconductivity.

1.1. Theory Summary and Overview

The background theory for this chapter focuses on fermionic superfluidity and the unusual
“normal” states that are present above the transition temperature. The physics is rela-
tively simple to appreciate. Fermionic superfluidity is driven by an attractive interaction
between fermions, which leads them to pair up, and thereby introduces boson-like degrees
of freedom. These bosons, called “Cooper pairs”, are driven by statistics to condense at
low temperatures, and in the process form a superfluid state. In the simplest case, the
“Bose condensation” is a macroscopic occupation of a many-particle ground state in
which the net pair momentum is zero. A formal machinery for implementing this picture
was presented by Bardeen, Cooper, and Schrieffer (BCS) and it has worked remarkably
well for addressing conventional superconductors as well as superfluid helium-3. With the
discovery of the high-temperature superconductors, there was a re-examination of BCS
theory, not so much because it failed in the well-studied superconductors, but because it
began to emerge as a very special case of a much more general theory.

This more general theory of fermionic superfluids is known as BCS-Bose Einstein
condensation (BEC) or BCS-BEC theory. This approach identifies BCS theory with the
limit of extremely weak attractive interactions. This weak attraction is associated with
very loosely bound pairs. We refer to the pair size as the “coherence length” ξ , so that
the BCS pairs are in the limit of very large coherence length compared to the interparticle
spacing. This identification corresponds well with the behavior of ξ , which is directly
observed in conventional superconductors. As the attraction becomes stronger, the pairs
become more tightly bound. Since the superfluid onset temperature, Tc, is directly related
to this attraction, it is simultaneously increased.

While there is a smooth crossover between BCS and BEC superfluids, the physics
changes most dramatically when one studies the behavior above Tc. Here, once one leaves
the BCS (weak attraction) regime, the normal phase changes from fermionic to a more
bosonic character. How does one monitor this change in effective statistics? This is pos-
sible through a parameter known as the pairing gap, 1. The pairing gap is the energy one
must provide to break up the Cooper pairs and create separate fermions. We emphasize
the pairing gap parameter in our theoretical discussions.

The cold Fermi gases have provided a unique opportunity to study the BCS-BEC
crossover because one can continuously tune the attractive interaction via Feshbach reso-
nances. The literature has focused on the so-called unitary regime that is roughly midway
between BCS and BEC. This regime corresponds to a particular interaction strength in
which the two-body scattering is associated with a divergent scattering length a→∞.
One could view this limit as the most strongly interacting regime [1]. Deep in the
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BCS side the interactions (between fermions) are weak, and deep on the BEC side the
interactions (between tightly bound bosons) are similarly weak. Indeed, many different
physics subdisciplines have been interested in the unitary gas, which is more extensively
discussed in Chapter 6. One might also imagine that high-temperature cuprate supercon-
ductors belong to this more general category of BCS-BEC. Supporting this scenario is
the fact that ξ is anomalously small, and Tc is, of course, high. In addition, there is a
rather extensive body of evidence that the normal state has a nonzero pairing gap. This is
frequently referred to as the “pseudogap.”

We begin with an introduction to the qualitative picture of the BCS-BEC crossover
scenario that is represented schematically in Fig. 1. This figure shows the contrast-
ing behavior of the two endpoints. An important parameter in the literature is T ∗, the
crossover temperature where the pairs first start to form. In the usual BCS theory, the
attractive interactions are so weak that there is no pairing until condensation occurs, so
that T ∗ ≈ Tc, whereas in the BEC limit T ∗ � Tc.

In Fig. 2, we present a schematic plot of the nature of the excitations (fermionic,
bosonic, or some mix of the two), as one varies from BCS to BEC. These are present
both above and below Tc, the latter as excitations of the condensate. Midway between
BCS and BEC (i.e., in the unitary regime) will be a mix of fermions and quasi-long lived
bosons. These bosons and fermions are not separate fluids, but rather they are strongly
interconnected. Indeed, the gap in the fermionic spectrum (related to 1) is a measure of
the number of bosons in the system.

In Fig. 3, we show a schematic of the gap parameter 1(T ) as a function of T , along
with the superfluid order parameter 1sc(T ). The former, which represents the “bosonic”
degrees of freedom, shows that pairs continuously form once the temperature is less than
a crossover temperature T ∗, while the order parameter turns on precisely at Tc. The height
of the shaded region in this figure reflects the number of noncondensed pairs. This number
increases monotonically with decreasing T , until Tc is reached. As T further decreases

BCS BEC

Weak coupling Strong coupling

Large pair size
k-space pairing

Small pair size
r-space pairing

Strongly overlapping
Cooper pairs

Ideal gas of
preformed pairs

T* = Tc T* >> Tc

Fig. 1. Contrast between BCS- and BEC-based superfluids.
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BCS Unitary BEC

Fig. 2. Schematic illustration of excitations (both above and below the transition Tc) in the BCS,
unitary, and BEC regimes. The single black discs represent fermionic excitations. Pair excitations
(represented by two fermions) become progressively dominant as the system evolves from the BCS
to BEC regime.

Tc

Δ
Δ (T )

T*

Δsc

Fig. 3. Contrasting behavior of the excitation gap1(T ) and the superfluid order parameter1sc(T )
versus temperature, appropriate to the unitary regime. The height of the shaded region roughly
reflects the density of noncondensed pairs at each temperature.

below Tc, the number of noncondensed pairs begins to decrease monotonically due to the
condensation of zero momentum pairs.

1.2. Creating Quantum Degenerate Fermi Gases

The achievement of Bose–Einstein condensation of trapped atomic gases in 1995 was a
watershed event in the history of many-body physics [2–5]. Since then, an astounding
number of phenomena, described in Chapter 2 of this volume, have been explored with
atomic bosons. Within just a few months of these first experiments, a proposal to use 6Li
to experimentally realize Cooper pairing in an atomic Fermi gas was published [6]. While
s-wave interactions are forbidden between fermionic atoms in the same internal state due
to the Pauli exclusion principle, interactions are allowed in a two-component Fermi gas.
This pseudo-spin-1/2 system of atomic fermions can be realized using two of the ground
state hyperfine sublevels, which are shown in Fig. 4 for 6Li. These sublevels differ in
either electronic or nuclear spin projection. The early proposal showed that the natu-
rally large attractive interaction between the two uppermost (most energetic) sublevels in
6Li was sufficient for pairing to occur at temperatures that had already been achieved in
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Fig. 4. Hyperfine sublevels of the 6Li 2S1/2 ground state. The labels on the right indicate the total
electronic angular momentum F and its projection m F , which are good quantum numbers at low
fields. At higher fields, the three most energetic levels correspond to electron spin-up, whereas the
three lowest to electron spin-down. The two lowest-going sublevels, with m F = ±1/2, exhibit a
broad Feshbach resonance near 834 G.

the boson experiments. However, two-body inelastic collisions are unacceptably large for
these sublevels. A better choice is the two lowest sublevels of 6Li, which are energetically
stable. Furthermore, a Feshbach resonance could be used to tune their relative interaction
strength to essentially any value [7]. Indeed, the collisional stability of a two-component
Fermi system near a Feshbach resonance substantially exceeds that of a Bose gas. Fesh-
bach resonances have turned out to be essential for experiments on Fermi superfluidity,
both in 40K and 6Li; they will be discussed in more detail in Section 1.3.

Creating degenerate Fermi gases proved to be not quite as straightforward as it was for
the Bose gases, described in Chapter 1. The final cooling step in every successful quan-
tum gas experiment with ultracold atoms has been evaporative cooling. Here, the most
energetic atoms are removed from the gas leaving the remaining atoms to rethermalize
to a lower temperature. This process can be very efficient, but it requires these thermal-
izing collisions to repopulate the high-energy tail of the Boltzmann distribution. As we
have seen above, however, a Fermi gas must contain at least two spin states (hyperfine
sublevels) in order for such collisions to occur, and the additional state opens up more
pathways for inelastic loss. Since all early quantum gas experiments utilized magnetic
trapping, a further constraint was that the two sublevels had to be “weak-field seek-
ing”, such that the energy of the state increases with field. Accommodating evaporative
cooling without unacceptably high atom loss from these inelastic pathways proved to be
considerably more difficult for fermions than for bosons.

Several methods were developed to circumvent the evaporative cooling problem. The
first degenerate Fermi gas was produced at JILA in 1999 using 40K [8], which has an
unusually large nuclear spin of 4. Because of the large nuclear spin in 40K, there are
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Bosons

810 nK

510 nK

240 nK

Fermions

Fig. 5. Sympathetic cooling of fermionic 6Li by bosonic 7Li. The 7Li atoms are actively evap-
orated using an RF method, whereas the 6Li is sympathetically cooled via elastic collisions. The
three different temperatures shown, corresponding to the three rows, are obtained by modifying
the evaporation cycles appropriately. A separate laser beam is used to image each isotope. (Data
from Ref. [9].)

several weak-field seeking sublevels in the lower, more stable manifold, and a gas formed
from two of these was magnetically trapped and evaporated to degeneracy. This approach
was not available for 6Li since its nuclear spin is only 1. Another approach was devel-
oped for 6Li in which a single spin state is cooled “sympathetically” using a co-trapped
but entirely different atomic species. This was employed at Rice and at ENS in Paris using
7Li as the refrigerant atom [9,10]. The actively evaporated 7Li cools the 6Li by collisions,
which are not symmetry forbidden. Figure 5 shows how the in situ column densities
of the two species evolve as evaporation progresses. Even though the two isotopes are
co-trapped in the same volume, their optical transition wavelengths are sufficiently dif-
ferent that the two species can be independently imaged. Initially, both the species are
relatively hot and their distributions are essentially the same. As the atoms get colder, it
is clear that the fermions occupy a larger volume than do the bosons. This is an effect of
Fermi pressure, the same mechanism that stabilizes white dwarf stars against gravitational
collapse.

1.3. Feshbach Resonances

The Feshbach resonance has played a central role in achieving pairing in ultracold atomic
Fermi gases. No experiment has thus far demonstrated pairing without employing a Fes-
hbach resonance to create a sufficiently strong attractive interaction. Furthermore, the
realization of the BEC-BCS crossover relies on tuning the interaction strength between
atoms from strongly binding in the BEC regime to weakly attractive on the BCS side. The
simplest way to conceptualize such tunability is to imagine that the interaction between
two nonidentical fermions is a square well with tunable depth U . The interaction can
be described by the s-wave scattering length a. For very small U , such that the well is
unable to support bound states, a is small and negative, corresponding to a small attractive
interaction. This is the BCS regime where the transition temperature Tc ∼ exp(−1/kF a)
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is exponentially small. Here, kF is the Fermi wavevector, and kF a is the natural unit of
interaction strength. As U is increased, a remains negative but increases in magnitude
until at sufficiently large U the square well finally supports a bound state. This point
corresponds to a scattering resonance, where a goes from −∞ to +∞, and is termed the
“unitarity” limit, where the scattering cross section is maximum. For even larger U , a
remains positive but diminishes in magnitude.

While this simple “single-channel” model gives the flavor of the Feshbach resonance,
it is incomplete. The Feshbach resonance actually involves two channels, usually corre-
sponding to the singlet (S = 0) and the triplet (S = 1) interaction potentials between pairs
of ground state alkali-metal atoms [11]. The total electronic spin, S, is only an approxi-
mately good quantum number, as the singlet and triplet states are coupled by the hyperfine
interaction. A Feshbach resonance occurs when atoms in the “open” (S = 1) or scatter-
ing channel are near resonance with a bound state in the “closed” (S = 0) channel. If the
open and closed channels have different magnetic moments, the resonance can be tuned
magnetically. A good example is 6Li, whose two lowest sublevels (Fig. 4) go through
resonance near 800 G [7], as shown in Fig. 6. At a field of 834 G, the scattering contin-
uum of the open channel is resonant with the bound singlet. At higher fields there is no
bound state possible, only an attraction that gives rise to pairing in the BCS regime. But at
fields below resonance, the superposition of the triplet continuum with the singlet bound
state gives rise to a weakly-bound molecular state, whose binding energy scales as 1/a2.
Sufficiently far below resonance, the molecular size (∼a) will be small compared with
the average interparticle distance, giving kF a � 1. This is the BEC regime where the
molecules condense into a Bose superfluid at low temperature.

400
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600 800 1000 1200
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Fig. 6. Coupled channels calculations of the 6Li Feshbach resonances involving the two energeti-
cally lowest Zeeman sublevels. A broad resonance is located near 834 G, whereas a narrow one can
be discerned near 543 G [12].
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2. ESTABLISHING PAIR CONDENSATION AND
SUPERFLUIDITY IN COLD FERMI GASES

One should appreciate that temperature is not straightforward to measure in these cold
gases. Moreover, because they are neutral and have a normal state gap, it is difficult to
convincingly establish that one has a superfluid phase. Initial strong indications of pair
condensation were first obtained on the BEC side of resonance [13,14], where there are
clear bimodal signatures in the density profile. This bimodality (i.e., separation between
condensate and excited atoms) is the hallmark of Bose superfluids. The density profiles
at unitarity, however, have essentially none of this bimodality. The earliest indications of
condensation at unitarity came a few months later [15,16] via fast magnetic field sweep
experiments, which start at unitarity and project onto the BEC regime (where condensa-
tion is more evident in the particle density profiles). The presumption is that even if the
condensate fraction is not conserved upon a fast sweep to BEC, the presence or absence
of a condensate will be preserved [15,16]. The time frame for the sweep will not allow a
condensate to form in the BEC regime if there were none present near unitarity, nor will
it allow a condensate to disappear if it was present initially.

The second generation experiments were based on thermodynamical measurements.
Figure 7 shows the evidence for a phase transition as reported in Ref. [17]. The mea-
sured energy is plotted as a function of temperature. The key feature here is that the data
(indicated by the solid squares) show an abrupt change at a temperature referred as Tc.
This abrupt change occurs for the unitary scattering case. No such feature is seen for the
noninteracting gas, plotted as a solid line in the inset.

The last generation experiment to make the case for superfluidity was the rather stun-
ning observation of quantized vortices by the MIT group [18], which is shown in Fig. 8.
Although these also involve sweeps to the BEC regime to obtain sufficient contrast in the
images, they provide the most direct evidence for superfluidity in the unitary gases.

3. THEORY OUTLINE

In contrast to the Bose gases, there is no consensus theory as yet to describe these
Fermi superfluids. Considerable effort has gone into both many-body analytic schemes
as well as Monte Carlo and related numerical approaches. Measures of what constitutes a
“successful” theory differ from one subcommunity to another. From a condensed matter
perspective, one tends to look for novel physical effects and focus on conceptual issues
relating, for example, to other highly correlated systems. Nevertheless, the universality
that appears precisely at unitarity, and the history of precision measurements associ-
ated with the atomic physics community tend to favor theoretical schemes that make
quantitative contact with experiment.

In this chapter, we restrict our consideration to analytical studies that build on the sim-
plest (BCS) theory of conventional superconductors. This is largely because BCS theory
represents, perhaps, the most complete and accessible analytical theory we have in con-
densed matter physics. We will see below that the form of the ground state wave function
associated with the BCS-BEC crossover is the same as that introduced in the original
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Fig. 7. Evidence for a phase transition (presumably to the superfluid phase) via plots of the energy
E for a trapped gas versus physical temperature T . The blue line in the inset corresponds to the
BCS or essentially free Fermi gas case, and the red data points shown in the main figure and inset to
unitarity. The slope change associated with the red data points (in inset and main figure) indicates a
phase transition. TF I is the Fermi energy of an ideal Fermi gas, and because these are measurements
with a trapped gas, Tc ≈ 0.23 differs from the theoretical value obtained for a homogeneous gas of
Tc ≈ 0.15− 0.17. (Adapted from Ref. [17].)

BCS theory. One has the hope, then, of being able to construct a theory of the crossover
in as complete a fashion as the 1957 theory of Bardeen, Cooper, and Schrieffer. This is
not to say that the ultimate theory of the unitary gas is expected to be fully captured by
this mean field approach, but it nevertheless should provide some useful intuition.

The field of BCS-BEC crossover is built around early observations by Eagles [19] and
Leggett [20] that the BCS ground state is much more general than was originally believed.
If one increases the strength of the attraction and self-consistently solves for the fermionic
chemical potential µ (which eventually decreases from the Fermi energy to negative
values), the wave function corresponds to a more BEC-like form of superfluidity. This
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Fig. 8. Evidence [18] for fermionic superfluidity via quantized vortices, from BCS to BEC.

ground state is given by the standard BCS wave function,

90 = 5k(uk + vkc†
k,↑c

†
−k,↓)|0〉 , (1)

where c†
k,σ and ck,σ are the creation and annihilation operators for fermions of momentum

k and spin σ =↑,↓. The variational parameters vk and uk are associated with the number
of occupied and unoccupied pair states, respectively.

3.1. Theory of Finite Temperature Effects: Comparing BCS and Ideal Boson BEC

It is useful to base our intuition of fermionic superfluids on that of true Bose gas conden-
sation. The bosonic degrees of freedom appearing in the BCS wave function Eq. (1) are
associated with fermionic pairs. Pair–pair interactions are not explicitly present so one
could say these Cooper pair bosons are essentially ideal. Since an ideal Bose gas cannot
support superfluidity, the superfluidity in the BCS case (as established, say, by the Meiss-
ner effect) implies that fermionic substructure of the bosons is necessary and sufficient to
sustain superfluidity. For ideal point bosons, one uses the condition that the total number
of bosons is the sum of the condensed contribution N0(T ) and the excited contribution
N ′(T ) with N = N0(T )+ N ′(T ). Moreover, the latter is straightforward to calculate

N ′(T ) =
∑
q6=0

b(�q), (2)

where b(�q) is the usual Bose–Einstein function written in terms of the noncondensed
bosonic excitation spectrum �q ∝ q2. Converting this to a density of states integral one
has, following Chapter 2,

N ′(T ) =

∞∫
0

dε
g(ε)

exp[β(ε − µB)]− 1
, (3)
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which defines the total number of particles not in the condensate. Here g(ε) is the density
of states per unit volume for bosons with ε ∝ q2 dispersion, and ε0 is the single particle
ground state energy that we take to be zero, as in Chapter 2. The equality µB(T , N ) = 0
is a fundamental constraint for all T ≤ Tc. The condensate fraction N0 is obtained from
N − N ′(T ).

To arrive at the fermionic counterpart of the above equations, we need to formulate a
generalized many-body theory. A number of such schemes have been introduced in the
literature, but we begin with the one that is consistent with Eq. (1) and with finite tempera-
ture extensions associated with Gor’kov and Bogoliubov-de Gennes theory. The simplest
extension of BCS theory to address the crossover can be summarized via the following
equations. As with the ideal Bose gas, one implements a constraint, on the noncondensed
fermion pairs, which below Tc are in chemical equilibrium with the condensate

µpair = 0, T ≤ Tc. (4)

Importantly, if the noncondensed pairs are properly identified, this leads to the familiar
BCS equation for the pairing gap

1(T ) = −U
∑

k

1(T )
1− 2 f (Ek)

2Ek
, (5)

where Ek =
√
(εk − µ)2 +12(T ), and f (Ek) is the usual Fermi function. We may

decompose the excitation gap into two contributions

12(T ) = 12
sc(T )+1

2
pg(T ), (6)

where 1sc(T ) corresponds to condensed and 1pg(T ) to the noncondensed gap compo-
nent. Just as in the Bose case, the number of noncondensed bosons is determined from the
dispersion of the noncondensed pairs, which must be compatible with Eq. (5) and yields

12
pg(T ) = Z−1

∑
b(�q , T ). (7)

Here Z is a coefficient of proportionality (unimportant for our purposes), which can also
be determined microscopically. It should be stressed that while12(T ) plays a similar role
in the fermionic system to the total bosonic particle number N , the former is generally
temperature dependent (except in the extreme BEC limit). Finally, not only does one need
the bosonic chemical potential (for bosons in equilibrium with the condensate), but the
fermionic chemical potential of the excited fermions must be established in the usual way
via the well known (BCS-like) number equation.

n =
∑

k

[
1−

εk − µ

Ek
+ 2

εk − µ

Ek
f (Ek)

]
, (8)

In this way, as follows from Eq. (6), the onset of superfluid coherence or nonzero 1sc

is associated with the condition that the gap equation cannot be satisfied by having only



To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter diacriTech. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.

Levin 08-ch03-069-094-9780444538574 2012/5/9 3:07 Page 80 #12

80 Kathryn Levin and R. G. Hulet

noncondensed pairs. We emphasize that 12(T ) plays an analogous role to the number of
bosons N , and this should underline the fact noted earlier that 1 6= 0 is really the only
way to get a handle on the bosonic degrees of freedom in a fermionic system.

3.2. Analytic Formalisms for Addressing Fermi Gas Experiments

What is particularly distinctive about the Fermi gases as compared to their Bose counter-
parts is the fact that the former can be studied throughout the entire range of temperatures
and, moreover, one finds the expected second-order phase transition at Tc. For the Bose
gases, theories are mostly confined to very low T and, when extended, lead to a first-order
phase transition at Tc. In Chapter 2, we saw that a well-developed tool for addressing
experiments in the cold Bose gases was the Gross–Pitaevskii (GP) theory, which could
be used in both time-independent and time-dependent situations. In order to apply the
theoretical ideas discussed above to experimental situations in the Fermi gases, where
there are spatial dependencies, one has three main analytical tools. (i) Landau-Ginsburg
theory, the fermionic analog of Gross-Pitaevskii theory, which describes the condensate,
(ii) Gor’kov theory, and (iii) Bogoliubov-de Gennes theory. The last two describe the
fermionic excitations of the condensate but become more complicated when one includes
noncondensed bosons. An additional analytical tool that is of widespread utility is linear
response theory to address weak perturbations of the superfluid. An analytical many-body
approach to BCS-BEC schemes lends itself to implementation of linear response theory,
provided one does this in a consistent, conservation-law-respecting way. The larger num-
ber of theoretical options for the Fermi gases, as compared with their Bose counterparts,
reflects the fact that they contain three rather than two components: fermionic excita-
tions, pair excitations, and condensate contributions. In strict BCS theory, the situation
is simpler since there are no pair excitations, whereas in strict BEC theory there are no
fermionic excitations.

We discussed in Chapter 2 that the (Bose gas) condensate dynamics is given by

i~
∂9B(r , t)

∂t
=

[
−

~2
∇

2

2M
+ Vtr(r)+ g|9B(r , t)|2

]
9B(r , t), (9)

where9B now depends on t as well as on r . A similar equation can be written for a Fermi
gas, although here one should be careful to address both the dynamics of the condensate
as well as that of the noncondensed pairs. For both cases, one writes rather generally the
same equation as for the bosons but with a different prefactor on the left

(eiθ )× ~
∂9F (r , t)

∂t
=

[
−

~2
∇

2

2M
+ Vtr(r)+ g|9F (r , t)|2

]
9F (r , t). (10)

This equation is known as the time-dependent Landau-Ginsburg theory and has been
derived for the condensate only near Tc and in the BCS regime. Here one finds a diffu-
sive dynamics in contrast to the behavior of the time-dependent bosonic Gross Pitaevskii
behavior, albeit primarily associated with very low temperatures. Thus, the factor eiθ is
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purely real for the fermionic condensate in this temperature regime. Here the bosons are
not well established or long-lived. Deep in the BEC regime of fermionic superfluids, the
dynamics associated with the noncondensed pairs is such that eiθ is purely imaginary,
corresponding to stable, long-lived bosons that have a propagating dynamics. More gen-
erally, between BCS and BEC, this factor is a complex number and θ may be viewed as
varying with the strength of the attractive interaction.

By far the most straightforward way of including trap inhomogeneity effects is the local
density approximation (LDA). This approximation assigns the properties of a nonuniform
fermionic system at a given point of their bulk values with an effective local chemical
potential. Then the calculations proceed as in a homogeneous system with the replacement

µ(r) = µo − Vtr(r), (11)

where Vtr(r) represents the confining potential. Here the fermionic chemical potential
µ(r) can be viewed as varying locally but self-consistently throughout the trap and µo is
the chemical potential at the trap center. For the most part, this approach has been useful
for addressing thermodynamic properties in a trap.

4. EXPERIMENTAL TOOLS

A remarkable series of advances have made it possible to find experimental counterparts
to many of the most powerful tools we have in condensed matter physics. These are
outlined in Table 1. In the next few subsections, we discuss how these are implemented
and some of the observations based on these techniques.

4.1. Measuring the Pairing Gap

Experiment and theory have worked hand in hand in developing an understanding of the
so-called radio frequency (RF) “pairing gap spectroscopy” in the atomic Fermi gases.
This class of experiments was originally suggested as a method for establishing the pres-
ence of superfluidity [21,22]. Pairing gap spectroscopy is based on using a third atomic
level, called |3〉, which does not participate in the superfluid pairing (see Fig. 9). Under

Table 1. Summary of the analogous experimental probes used in trapped
atomic gases and their counterparts in condensed matter.

Cold Fermi Gases Condensed Matter

Gap measurements Radio frequency spectroscopy Tunneling measurements
Fermionic dispersion Momentum resolved radio frequency Angle resolved photoemission
Scattering measurements Bragg two-photon scattering Neutron scattering
Transport measurements Viscosity and spin transport Conductivity dc and ac
Magnetic field studies Critical rotation frequency Upper critical magnetic field
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|3〉

|2〉

ωrf

|1〉

Fig. 9. Experimental configuration for radio frequency spectroscopy.

application of RF fields, one component of the Cooper pairs, called |2〉, is excited to state
|3〉. If there is no gap 1, then the energy it takes to excite |2〉 to |3〉 is the atomic level
splitting ω23. In the presence of pairing (either above or below Tc), an extra energy 1
must be input to excite the state |2〉, as a result of the breaking of the pairs.

A ground breaking experimental paper [23] reported the first experimental implemen-
tation of this pairing gap spectroscopy in 6Li over a range of fields corresponding to
the BCS, BEC, and unitary regimes. Accompanying this paper was a theoretical study
[24] based on the BCS-BEC crossover approach introduced earlier [25], but, importantly,
generalized to include trap effects. Indeed, because of trap effects measurements of the
pairing gap are not entirely straightforward to interpret. At general temperatures, a mea-
surement of the current out of state |2〉 is associated with two discrete structures. A sharp
peak at ω23 ≡ 0, which derives from “free” fermions at the trap edge and a broader peak
that reflects the presence of paired atoms; more precisely, this broad peak corresponds to
the distribution of 1 in the trap. At high T (compared to 1), only the sharp feature is
present, whereas at low T only the broad feature remains. Additional experiments have
introduced a powerful way of exploiting and enhancing RF spectroscopy using tomo-
graphic techniques [26]. Here the RF contribution is resolved at different distances from
the trap center, throughout the trap. This spatial distribution is obtained using in situ
phase-contrast imaging and 3D image reconstruction. In this way, scans at different trap
radii yield an effectively homogeneous spectrum.

These data alone do not directly indicate the presence of superfluidity, but rather they
provide evidence for pairing. Indeed, like photoemission in condensed matter systems,
these measurements reflect the fermionic spectral function A(k,ω). One caveat should be
noted here. Unlike a photoemission experiment where the fermion is removed from the
sample, here it is excited to a higher internal energy state. As a consequence there may
be residual interactions between atoms in this excited state and the nonexcited (“Cooper
pair partner”) states in the system. These are known as final state effects, which can,
fortunately, often be minimized.

4.2. Momentum Resolved Radio Frequency Experiments: A Cold Gas Analog
of Angle Resolved Photoemission

Recent experiments on 40K from the JILA group [27] have demonstrated that it is pos-
sible to measure spectral functions directly using momentum resolved RF pairing gap
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Fig. 10. Momentum resolved radio frequency (“photoemission”) spectra [28] throughout the pseu-
dogap regime. These spectra are for Fermi gases at three different temperatures, each with roughly
the same interaction strength, near unitarity.

spectroscopy over a range of magnetic fields throughout the BCS-BEC crossover. These
experiments are able to resolve the kinetic energy Ek , and thereby, the three-dimensional
momentum distribution of the RF-excited (or “out-coupled”) state 3 atoms. Since the
momentum of the RF photon is effectively negligible, the momenta of the out-coupled
atoms can be used to deduce that of the original 1-2 paired state. There is a substantial
advantage of using 40K for these studies over the more widely studied 6Li, since there are
no nearby Feshbach resonances involving the final state for 40K that complicate interpre-
tation of the spectra. Momentum resolved RF spectra can be compared with momentum
resolved (or “angle resolved”) photoemission in the high-temperature superconductors.
The goal of these experiments and related theory is to deduce the fermionic quasi-particle
dispersion, which would reveal the pairing gap 1(T ).

In Fig. 10, we present experimental measurements of the one-particle fermionic spec-
tral functions as a contour plot. The dotted white curve represents an estimate of the
experimentally deduced peak dispersion, which can then be fit to the BCS dispersion
involving Ek, which was introduced below Eq. (5). With higher resolution it should be
possible to obtain more direct information about the mean experimentally deduced gap
size. Importantly, the fact that the experiments were done near Tc has been argued to sug-
gest that there is a sizable pseudogap in the Fermi gases at and above Tc in the unitary
regime.

4.3. Universal Properties: The Closed-Channel Fraction and the Contact

Strongly interacting Fermi gases exhibit a universality, as discussed in Chapter 6, that
extends their significance beyond that of any particular realization, such as cold atoms,
atomic nuclei, or even quark matter. At unitarity, the absence of any length scale other
than the particle density implies that there is a direct proportionality between the chemical
potential and the Fermi energy of a noninteracting gas. The coefficient of proportionality,
known as the Bertsch parameter, governs the low-energy properties of the system. Short-
distance correlations, characterized by a parameter C, known as the “contact”, have also
been shown to be related to a broad array of universal properties [29–31]. C connects–
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quantities as diverse as the high-momentum tail of the momentum distribution (including
the high-frequency tail of RF spectra), the total energy, the rate of change of total energy
with respect to an adiabatic change in a, and a virial theorem relation [29–31]. These
universal relations are particularly powerful as they extend beyond unitarity into the BCS
and BEC regimes, connect microscopic quantities to thermodynamic ones, and require
only that |a| be large compared to the scale of the interaction potential.
C can be directly measured by determining the strength of the local pair correlations,

which was done using photoassociation [32]. We discussed in Section 1.3 that Cooper
pairs in these systems are a superposition of the triplet scattering state (open channel)
and a bound vibrational level of the singlet potential (closed channel). For 6Li, the bound
S = 0 vibrational level corresponds to v = 38, and the pairs can be expressed as

|ψp〉 = Z1/2
|ψv= 38(S = 0)〉 + (1− Z)1/2|φa(S = 1)〉, (12)

where Z is the closed-channel fraction. Here, ψv= 38(S = 0) are the closed-channel
molecules and φa(S = 1) are the free atom pairs in the triplet channel. In the case of
wide resonances, (and the 6Li resonance is as wide as any known Feshbach resonance), Z
is expected to be small throughout the resonance region. For sufficiently small Z , the reso-
nance may be well described by a universal single-channel model, such as the square well
discussed previously. Under these conditions, the macroscopic properties of the superfluid
are independent of the microscopic physics of the two-body interactions.

The quantity Z has been measured experimentally for 6Li using photoassociation [32].
Since S is a good quantum number in the vibrational levels of the Li2 molecule, the selec-
tion rule1S = 0 is obeyed in the photoassociation transition. The singlet part of the pairs
can then be picked out by driving an optical transition from |ψp〉 to an electronically
excited molecular state with S = 0. The rate of such an excitation will be proportional
to Z , where the proportionality depends on the constant bound-bound matrix element
between |ψv= 38(S = 0)〉 and the excited molecule. An excitation results in a detectable
loss of trapped atoms. The rate of excitation was measured in this way and the corre-
sponding values of Z were determined throughout the BEC-BCS crossover, as shown in
Fig. 11. At unitarity, Z < 10−4, and Z remains smaller than 1%, even deep into the BEC
regime. These results confirm the universality for broad resonances.

It was pointed out in Ref. [32] that since the rate of photoexcitation in this experi-
ment is proportional to the overlap between two tightly bound molecular levels of the
Li2 molecule whose sizes are much smaller than typical interparticle distances, it is
also proportional to the integral over volume of the local pair correlation G2(r , r) =
〈ψ̂

†
↓
(r)ψ̂†

↑
(r)ψ̂↑(r)ψ̂↓(r)〉, where ψ̂↑ and ψ̂↓ are the fermionic field operators for atoms

in different internal states. Consequently, a measurement of Z also corresponds to a
measurement of the short-range pair correlations. Furthermore, since the integral over
volume of G2(r , r) is proportional to the contact C introduced by Tan in Refs [29,
30], the measurement of the closed-channel fraction is a measurement of the contact
[33,34].
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Fig. 11. Closed-channel fraction Z throughout the BEC-BCS crossover. The closed circles repre-
sent the value of Z extracted from the rates of photoexcitation to an excited molecular level. The
dotted line shows a comparison with results obtained from an exact (coupled channels) two-body
calculation. The vertical dashed lines represent the boundaries of the strongly interacting regime,
kF |a| > 1. (Reprinted from Ref. [32].)

Several of the other contact relations have been recently experimentally verified [35].
In these measurements, C was obtained from measurements as diverse as the high-
momentum tail of the momentum distribution obtained by releasing the atoms from a
trap, to thermodynamic quantities such as a generalized virial relation.

4.4. Thermodynamics

The thermodynamic variables, energy, pressure, and entropy have been systematically
studied for the unitary gases. The earliest such measurements established trap averaged
quantities [17], such as plotted in Fig. 7. These measurements have been reanalyzed using
a new determination of temperature, independent of theory. More recently [36], there has
been considerable progress in establishing the equation of state or the thermodynamic
potential, � = −PV , for a homogeneous gas. This is based on the local density approxi-
mation and a simple relation between the local pressure inside a trapped gas and the twice
integrated density profiles, or “axial density”. Here temperature is usually determined
by using the surface density as a thermometer. A single image gives the pressure as a
function of variable chemical potential, thereby providing a large number of independent
determinations of the equation of state. By collecting and averaging the data from many
such images, one obtains the equation of state with very low noise. Figure 12 shows a
comparison of recent data from three different groups as well as examples of theoretical
plots in the inset. This figure should make it clear that thermodynamic studies (there are
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Fig. 12. Comparison of different equations of state for the energy E versus temperature measured
experimentally and labeled ENS [36], Tokyo [37], and MIT [38]. The inset presents predictions
from two theory groups denoted 1 [39] and 2 [17], respectively, as compared with one set of
experimental data [36]. The equations of state in some instances have been updated with new ther-
mometry. The Theory “2” plots include a fitted Hartree term and Theory “1” is based on a modified
Nozieres Schmitt-Rink approach [40].

counterparts for entropy, chemical potential, etc.) have received considerable attention in
the cold atom community.

Of considerable interest in these thermodynamic experiments are universal properties
associated with unitarity. In this infinite scattering length case (with an interaction of zero
range), the energy per unit volume of the system is directly proportional to that of the free
Fermi gas at the same density n.

ε(n) ≡
E

V
∝

n5/3

m
≡ ξεfree(n) (13)

Here ξ is the “Bertsch” parameter, which is independent of any materials parameters,
applying equally to all Fermi systems at unitarity. This parameter appears to be around
0.38 within about 2%.

Experiments are close to converging on these thermodynamical characterizations of
both the trapped and homogeneous gases. The equations of state for the latter, in partic-
ular, have been viewed as important benchmarks for assessing numerical and analytical
approaches to the Fermi gases. Nevertheless, it should be stressed that thermodynamical
probes are not as discriminating tests of theory as are dynamical probes. This is most
readily seen by comparing transport properties (say, the shear viscosities) of fermionic
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versus bosonic quantum fluids, helium-3 and helium-4 [41], with their specific heat coun-
terparts. Here, one sees that the latter are far more similar than are the viscosities. Using
thermodynamics as a precision test of theory may be incomplete and it is extremely impor-
tant to provide a characterization of transport in the ultracold Fermi gases, as well. This
lays the groundwork for the focus on the dynamics in unitary gases, which is discussed in
Chapter 6.

4.5. Transport Experiments in the Fermi Gases

We summarize briefly the viscosity measurements to be discussed in Chapter 6. These
experiments deduce the shear viscosity from the damping of collective (breathing) modes
in the trapped gas. A great deal of interest has focused on viscosity experiments because
they seem to reflect “perfect fluidity”, as is expected in many strongly interacting sys-
tems, such as quark–gluon plasmas. One can ask about the counterpart of perfect fluidity
in condensed matter superconducting systems. Indeed, the conductivity at any low fre-
quency ω except strictly zero is a close analog to viscosity. This conductivity is associated
with the excited states of the condensate and must be distinguished from the infinite
conductivity of the condensate itself which occurs at ω = 0. Despite the fact that the
condensate contribution to conductivity is infinite, (while the condensate contribution
to viscosity is zero), the analogies hold between the contributions to transport from the
condensate excitations. A perfect fluid has anomalously low viscosity, whereas a bad
metal has anomalously low conductivity. This “bad metallicity” is widely studied in the
high-temperature superconductors [42].

Recent viscosity data are plotted in Chapter 6 for a unitary trapped Fermi gas [43].
The viscosity and its ratio to entropy density are both observed to be strongly suppressed
at low T. This behavior of the ratio was importantly predicted by D. T. Son [54] while
the suppression in both quantities appeared as a prediction in Ref. [44]. The normal state
behavior is in contrast to what is expected of a Fermi liquid. The superfluid behavior
is more similar to (fermionic) helium-3 but in contrast to what would be expected in
superfluid (bosonic) helium-4. The behavior of both helium-3 and the Fermi gases can be
understood as reflecting the strong reduction in the number of fermionic carriers in the
presence of a pairing gap. Because of the pseudogap, the normal state is very different
from a Fermi liquid, where a low T upturn would otherwise be expected. Because the
carrier number is effectively constant in a Fermi liquid, this upturn would derive from
the decrease in interparticle scattering. The behavior of the shear viscosity in superfluid
helium-4 also shows a low T upturn. This is thought to reflect the phononic excitations
that dominate the transport in this regime. In a BCS-like superfluid, the collective mode
phonon-like excitations are longitudinal. In a charged superconductor, as is well known,
they do not affect the analogous near-zero frequency conductivity. Similarly, to the extent
that the unitary Fermi gas has BCS-like characteristics, one would not expect the phonons
to affect a transverse probe, like the shear viscosity. This may then explain the measured
behavior of the viscosity.

4.6. Two-Photon Bragg Scattering: Analogies with Neutron Scattering Experiments

The analog to neutron experiments which have been so important in condensed matter, are
two-photon Bragg scattering studies. The strength of cold atom experiments is that, unlike
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Fig. 13. Experimental scheme for Bragg scattering. This represents a “spin flip” process in the
sense that the final state and the initial state are different. One can also contemplate nonspin flip
processes in which the initial and final states correspond to the same quantum index.

neutron probes, they can, in principle, separately measure the density and spin correlation
functions. Bragg scattering can be thought of as a coherent scattering process involving
absorption of a photon from one of two laser (Bragg) beams and stimulated emission into
the other: a two-photon transition. This combination of processes can leave the atoms
in the same internal state, but with a new momentum, k, determined by the geometry
and wavelength of the Bragg beams. The two lasers have slightly different frequencies,
to additionally account for a shift in energy of the final state. One can also contemplate
processes where the internal states are changed such as in Fig. 13. In linear response
theory, these experiments correspond to measuring the dynamical density–density or spin
density–spin density correlation functions. These are functions of the momentum and
frequency transfer. Typically, the Bragg response is measured by looking at the cloud
using time-of-flight atom imaging, where the gas is suddenly released from the trap and
allowed to expand before imaging.

An important aspect of the density–density scattering processes is that they reflect the
phononic-like collective modes of the superfluid order parameter. This is in contrast, say,
to what is referred to as “transverse” transport probes such as the shear viscosity or the
conductivity. In this way, these measurements have the capability of indicating superfluid
coherence [45].

4.7. Fermi Gases with Imbalanced Spin Populations

Unlike conventional superconductors, where spin polarization is excluded by the Meiss-
ner effect, spin imbalance is a readily tunable parameter in ultracold atomic Fermi gases.
Shortly after the development of the BCS theory, theorists began to speculate how
pairing is modified by spin polarization. They predicted new and exotic pairing mech-
anisms, such as the elusive FFLO state (named after its proposers: Fulde, Ferrell, Larkin,
and Ovchinnikov), that may occur in an imbalanced system. The FFLO-state features
pairs with a momentum equal to the difference of the Fermi momenta of the two spin
states. This nonzero center-of-mass momentum results in an order parameter that is both
anisotropic and oscillatory in space.
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Although spin polarization is excluded in conventional superconductors, certain com-
pounds such as the heavy-fermion materials, support coexisting superconducting and
magnetic order. Although there is some preliminary evidence for FFLO-pairing in these
systems, the smoking gun, nonzero pair momentum, has not been found. Arbitrarily spin-
polarized atomic Fermi gases may be created by simply adjusting the relative populations
of the hyperfine sublevels corresponding to “spin-up” and “spin-down”. The stability of
these states over the time scale (seconds) of the experiments ensures that the spin polar-
ization of the gas does not vary during the experiment. Several experiments have been
performed in this way with the result that the gas phase separates into an unpolarized
superfluid core surrounded by a polarized normal shell [46 48]. No evidence for the
FFLO state has yet been found.

The FFLO state in three dimensions (3D) remains elusive, but theory shows that it
is ubiquitous in a spin-imbalanced Fermi gas in 1D [49]. The phase diagram, shown in
Fig. 14, is predicted to have three distinct phases: (1) fully polarized normal; (2) fully
paired superfluid; and (3) partially polarized FFLO superfluid. This result was explored
experimentally by using a two-dimensional optical lattice to produce an array of 1D tubes
[50]. By making the lattice intensity sufficiently strong, the tubes are effectively isolated
from one another. Since the atoms are confined harmonically along the tube axis, the
density and hence the total chemical potential µ = µ↑ + µ↓ in each tube varies along
this axis. While µ varies from a maximum value µ0 at the center of the tube to 0 at the
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Fig. 14. Phase diagram of a one-dimensional spin-imbalanced Fermi gas. The horizontal axis is
the effective magnetic field h, which is related to the degree of polarization. The vertical axis is
the total chemical potential µ, which is related to the density. The vertical lines show how the
phase diagram is traversed in going from the center of the 1D tube, where µ is high, to the edges of
the tube. At low imbalance the edge corresponds to a fully paired phase, whereas for high imbal-
ance the edge is fully polarized. In both the cases, the center of the tube is partially polarized and
predicted to be the exotic FFLO-(Fulde-Ferrell-Larkin-Ovchinnikov) paired state. (Reprinted from
Ref. [50] and adapted from Ref. [49].)
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Fig. 15. Axial density profiles of a spin-imbalanced 1D ensemble of tubes. Black circles represent
the 1D density of the majority atoms (spin-up), the blue diamonds represent the minority (spin-
down), whereas the red squares show the density difference. The dashed vertical lines indicate phase
boundaries, where either the minority density or the density difference vanish. The polarizations P
in the central tube are (a) P = 0.015, (b) P = 0.055, (c) P = 0.10, and (d) P = 0.33. For low P
(a and b), the edge of the cloud is fully paired and the difference is 0, whereas for larger P (d), the
edge is fully polarized and the minority density vanishes. (Reprinted from Ref. [50].)

edges, the chemical potential difference h = µ↑ − µ↓ must be constant in order for the
gas to be in chemical equilibrium. Traversing the tube from center to the edge corresponds
to a cut through the phase diagram, as indicated by the vertical lines in Fig. 14. If µ0 is
sufficiently large for the center of the tube to be partially polarized, a phase boundary will
be encountered in passing from the center of the tube to the edge. For each combination
of µ0 and h, therefore, the tube will exhibit a pair of phases, with the center always being
partially polarized while the wings will be either fully paired for small h, or fully polarized
for large h.

Each tube was loaded with ∼200 6Li atoms with a particular imbalance. Phase bound-
aries were extracted from the density distributions obtained from optical imaging. The
fully polarized/partially polarized boundary is determined by where the minority den-
sity n↓ goes to zero, while the fully paired/partially polarized boundary is given by the
location of vanishing spin density n↑ − n↓. Several representative density distributions
showing the phase boundaries are given in Fig. 15. The phase diagram was mapped out
experimentally in this way, and good agreement was found with Bethe-ansatz theory [50].

4.8. Rotating Gases and Analog of Magnetic Field Effects

In contrast to a normal fluid such as water, a superfluid can only rotate by forming an
array of quantized vortices, each of which carries part of the total angular momentum
of the superfluid. In addition to expelling atoms from their centers to leave a string-like
hollow core, the vortices also repel each other to generally form a regular lattice pattern. In
trapped atomic gases, this rotation can be created by using a repulsive “spoon” potential,
created by a blue-detuned laser beam, to vigorously stir the gas.
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Charged fermionic superconductors and rotating superfluids are closely related by the
correspondence

e A(r)↔ mω × r (14)

between the superconductor with a magnetic field and the neutral rotating (at frequencyω)
superfluid. It can be said that neutral superfluids are more analogous to extreme type II
superconductors, where the penetration depth is infinite. Just as in charged superconduc-
tors, at sufficiently high rotation frequencies, the neutral superfluids exhibit vortices (as
in Fig. 8) and these, in turn, exhibit quantized circulation.

Experiments to explore vortex phases and possible quantum Hall phenomena are under-
way. Some progress toward pursuing analogies with condensed matter relates to the
precursor diamagnetism observed, say, in the high Tc cuprates. This diamagnetism has
been the topic of considerable excitement [51] and much debate. Analogous to this dia-
magnetism in a charged superconductor may be an above-Tc reduction in the moment
of inertia of a Fermi superfluid. This is associated with finite size clouds. There may
be some experimental indications that the equilibrium values of this moment of inertia
are somewhat suppressed in the normal state [52]. Besides high Tc cuprates, this general
class of experiments bears on other important condensed matter systems such as possible
observation of supersolid phases.

5. CONCLUSIONS

The aim of this chapter is to convey new and exciting developments in the physics of
ultracold atoms to condensed matter physicists. It should be clear that, because of the
shared Fermi statistics, atomic Fermi gases (and their optical lattice counterparts) have the
potential for addressing important unsolved problems relating to electrons in condensed
matter. They would seem even more promising in this regard than atomic Bose gases.

Another exciting aspect of the Fermi gases is their potential to explore a generalized
form of fermionic superfluidity, which seems, in many ways, more natural than simple
BCS theory. In this generalized form, known as BCS-BEC crossover theory, the pair size
must no longer be large or the pair binding weak. As a result, pairs form at a higher
temperature (called T ∗ in the literature) than that at which they condense, Tc. BCS theory
as originally postulated can be viewed as a paradigm among theories of condensed matter
systems; it is generic and model independent, and extremely well verified experimentally
for conventional (presumably long coherence length) superconductors. The observation
that a BCS-like approach extends beyond strict BCS theory suggests that there is a larger
theory to be discovered. Equally exciting is the possibility that this discovery phase can
proceed in a very collaborative fashion, involving both theory and experiment.

One fascinating feature of this crossover is that the statistics may be tuned continuously
from fermionic to bosonic. This may lead to a fundamental challenge for theory. In any
attempt to combine bosonic and fermionic mean field theories, as must be accomplished
in BCS-BEC crossover, one should be aware that there is no fully satisfactory mean field
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theory of the weakly interacting Bose gas (or Bogoliubov theory), which addresses the
entire range of temperatures. This is in contrast to the situation for the fermionic (BCS-
based) superfluids that apply to all temperatures. The central problem is that extensions of
Bogoliubov theory to the transition region generally lead to a first-order transition. This
suggests that either one must use a far more sophisticated model (than Bogoliubov theory)
or a simpler BCS-based-level theory (in which the bosons are essentially non-interacting)
to avoid discontinuities at Tc (e.g., as shown in the inset of Fig. 12).

The BCS-BEC crossover picture has been investigated for many years in the context of
high-temperature superconductors [53]. It leads to a particular interpretation of a fascinat-
ing, but not well understood nonsuperfluid phase, known as the “pseudogap state.” In the
cold atom system, this crossover description is not just a scenario, but has been realized
in the laboratory. A number of cold gas experiments have been interpreted as evidence for
a pseudogap state. Where there seems to be controversy about this claim is in inferences
drawn from thermodynamics [36]. We note, finally, that research in this field has not been
limited exclusively to the two communities (condensed matter and AMO). One has seen
the application of these crossover ideas and, in particular a focus on the unitary gas, to
nuclear physics and to particle physics as well. There are not many problems in physics,
which have as great an overlap with different subfield communities.

We have tried in this chapter to stress the powerful tunability of the ultracold Fermi
gases arising from Feshbach and other experimental “knobs.” We have also emphasized
the wide-ranging experimental tools that have been developed by the AMO community
over a relatively short period of time. With these tools and others awaiting development,
the future is wide open.
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