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Superconductivity and magnetism generally do not coexist. Changing
the relative number of up and down spin electrons disrupts the basic
mechanismofsuperconductivity,whereatomsofoppositemomentum
and spin form Cooper pairs. Nearly forty years ago Fulde and Ferrell1

and Larkin and Ovchinnikov2 (FFLO) proposed an exotic pairing
mechanism in which magnetism is accommodated by the formation
of pairs with finite momentum. Despite intense theoretical and experi-
mental efforts, however, polarized superconductivity remains largely
elusive3. Unlike the three-dimensional (3D) case, theories predict that
in one dimension (1D) a state with FFLO correlations occupies a major
part of the phase diagram4–12. Here we report experimental measure-
ments of density profiles of a two-spin mixture of ultracold 6Li atoms
trapped in an array of 1D tubes (a system analogous to electrons in 1D
wires). At finite spin imbalance, the system phase separates with an
inverted phase profile, as compared to the 3D case. In 1D, we find a
partially polarized core surrounded by wings which, depending on the
degree of polarization, are composed of either a completely paired or a
fully polarized Fermi gas. Our work paves the way to direct observation
and characterization of FFLO pairing.

The FFLO states are perhaps the most interesting of a number of
exotic polarized superconducting phases proposed in the past 40 years.
In the original concept of Fulde and Ferrell, Cooper pairs form with
finite centre-of-mass momentum1. Larkin and Ovchinnikov proposed
a related model in which the superconducting order parameter oscil-
lates in space2. These two ideas are closely related, because the oscil-
lating order parameter may be interpreted as an interference pattern
between condensates with opposite centre-of-mass momenta. The
spin density oscillates in the Larkin and Ovchinnikov model, leading
to a build-up of polarization in the nodes of the superconducting order
parameter. Thus, the Larkin and Ovchinnikov state can be considered
a form of microscale phase separation with alternating superfluid and
polarized normal regions. By including more and more momenta,
subsequent theorists were able to evaluate the stability of ever more
complicated spatial structures3.

Previous studies of superfluidity in fermionic atoms show that ultra-
cold atoms form a powerful tool with which to investigate the emer-
gent properties of interacting systems of many particles. Although they
are largely analogous to an electronic superconductor, the atomic
systems feature tunable interactions. This extra degree of control has
led to a number of unique experiments and conceptual advances.
Furthermore, the absence of spin relaxation enables us to spin-polarize
the atoms to explore the interplay between magnetism and superfluidity,
with the potential to observe the FFLO phase. Recent calculations indi-
cate that if a FFLO phase exists in 3D trapped gases, it will occupy a very
small volume in parameter space13,14. Experiments in 3D and in the
strongly interacting limit show that the gas phase separates with an
unpolarized superfluid core surrounded by a polarized shell15–19, with
no evidence for the FFLO phase. Here, we study a polarized Fermi gas in
1D, for which theory predicts that a large fraction of the phase diagram is
occupied by an FFLO-like phase (see Fig. 1a)4–12. In this 1D setting, the
physics should be closest to that described by Larkin and Ovchinnikov,

where an oscillating superfluid order parameter coexists with a spin-
density wave. Owing to fluctuations, the order will be algebraic rather
than long-range. The increased stability of FFLO-like phases in 1D can
be understood as a ‘nesting’ effect, in which a single wavevector connects
all points on the Fermi surface, allowing all atoms on the Fermi surface
to participate in finite momentum pairing, whereas in 3D, only a small
fraction of these atoms are able to do so. Similar enhancements are
predicted for systems of lattice fermions and quasi-1D geometries10,20.

Our work complements studies of astrophysical objects3 and solid-
state systems. Like our current experiment, the solid-state experiments
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Figure 1 | Theoretical T 5 0 phase diagram (adapted from ref. 6).

a, Schematic with m~
1
2

(m1zm2) versus h~
1
2

(m1{m2) , showing three phases:

fully paired (green), fully polarized (blue), and partially polarized (yellow),
which is predicted to be FFLO. In a trap, m decreases from the centre to the edge,
while h is constant throughout the tube. The vertical arrows show two possible
paths from the trap centre to edge: The partially polarized centre is surrounded
either by a fully paired superfluid phase at low h or by a fully polarized phase at
high h. At a critical value of h, corresponding to a polarization Pc, the whole
cloud is partially polarized. b, Phase diagram of the 1D trapped gas with
infinitely strong point interactions. The scaled axial radius is defined in the Fig.
3 caption. The red line corresponds to the scaled radius of the density
difference, and the blue line is the scaled radius of state | 2æ.
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typically involve highly anisotropic materials—made up either of weakly
coupled two-dimensional (2D) planes or 1D wires. Examples include the
organic superconductorl-(BETS)2FeCl4 (ref. 21) and the heavy fermion
superconductor CeCoIn5 (refs 22 and 23). However, FFLO states have
not been conclusively observed in any system.

Details of our experimental procedures are given in the Methods
and in refs 16 and 17. We create a mixture of the two lowest hyperfine
levels of the 6Li ground state, the majority state j1æ, and the minority
state j2æ. An array of 1D tubes is formed with a 2D optical lattice24. The
lattice potential is given by V 5 V0cos2(kx) 1 V0cos2(ky), with k 5 2p/l
and V0 5 12er, where V0 is the potential depth, x and y are two ortho-
gonal radial coordinates, l is the optical trap laser wavelength of
1,064 nm, er 5 B2k2/2m is the recoil energy, and m is the mass of a 6Li
atom. There are several requirements to be met for the system to be 1D.
First, only the lowest transverse mode in each tube may be populated.
This requires that both the thermal energy kBT and the 1D Fermi
energy eF 5 N1Bvz be small compared to the transverse confinement
energy BvH. Here N1 is the number of atoms per 1D tube in state j1æ,
and vz and vH are the axial and transverse confinement frequencies of
an individual tube. Second, the single-particle tunnelling rate t should
be small compared to both eF and T. The condition eF . t is equivalent
to specifying that the Fermi surface is 1D, and the condition T . t
makes the inter-tube coupling incoherent. All conditions are well satisfied
in our experiment: the tube aspect ratio vH/vz 5 1,000 is larger than
N1 < 120 for the central tube; and t/kB < 17 nK is much smaller than
both eF/kB < 1.2mK and T < 175 nK.

We tune an external magnetic field to the Bardeen–Cooper–
Schrieffer (BCS) side (890 G) of the broad 3D Feshbach resonance in
6Li (refs 25 and 26), where the 1D interactions are strongly attractive27,28.
We measure the in situ density of the two spin species by sequential
imaging with two probe laser beams, choosing their intensity and fre-
quency to maximize the signal-to-noise ratio of the density difference
(see Methods). Assuming hydrostatic equilibrium, the 1D spatial density
profiles n1,2(z) can be expressed in terms of m 5 m0 2 V(z), and h 5 h0,
where m0 and h0 are the chemical potential and chemical potential
difference at the centre of the tube, set by the total number of particles
in the tube N 5 N1 1 N2 and polarization P 5 (N1 2 N2)/N; V(z) is the
axial confinement potential. In particular, the phase boundary between
the fully paired and partially polarized regions occurs where the density
difference n1(z) 2 n2(z) 5 0, and the boundary between the fully and
partially polarized phases corresponds to n2(z) 5 0, as shown in Fig. 1b.

Figure 2 shows axial density profiles of state j1æ, state j2æ, and their
differences for a range of polarizations. These images represent the sum
of the linear density in all tubes in our system, and are produced by
integrating our column density images across the remaining transverse

direction. At low polarization, a partially polarized region forms at
the centre of the trap (Fig. 2a), the radius of which increases with
increasing polarization (Fig. 2b). This is distinctly different from a
polarized 3D gas in which the centre is fully paired. At a critical
polarization Pc, the partially polarized region extends to the edge of
the cloud (Fig. 2c). When the polarization increases further, the edge
of the cloud becomes fully polarized (Fig. 2d). From the images of the
atomic clouds we extract the axial radii of the ensemble of tubes of the
minority density and the density difference. The axial radii of the tube
bundle are equivalent to the central tube radius for our experiment
because the inner and outer boundaries both decrease monotonically
going from the central to the outer tubes (see Supplementary Informa-
tion). We perform an inverse Abel transform to obtain the number of
particles and polarization in the central tube. Following ref. 6, we plot
these radii as a function of the central tube polarization (Fig. 3),
normalizing the radii by (N0)1/2az, where N0 is the total number of
particles in the central tube and az 5 (B/mvz)K is the harmonic oscil-
lator length along the central tube. The critical polarization Pc corre-
sponds to the crossing of these two radii where the entire cloud is
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Figure 2 | Axial density profiles of a spin-imbalanced 1D ensemble of tubes.
Integrated axial density profiles of the tube bundles (black circles represent the
majority, the blue diamonds represent the minority, and the red squares show
the difference) are shown as functions of central P. a, At low P (50.015), the
edge of the cloud is fully paired and the density difference is zero. The centre of
the cloud is partially polarized. The density difference has been multiplied by

two for better visibility of the phase boundary (dashed black line). b, For
increasing P (50.055), the phase boundary moves to the edge of the cloud as the
partially polarized region grows. c, Near Pc (P 50.10), where almost the entire
cloud is partially polarized. d, Well above Pc (P 50.33), where the edge of the
cloud is fully polarized and the minority density vanishes.
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Figure 3 | Experimental phase diagram as a function of polarization in the
central tube. The scaled radii of the axial density difference (red diamonds)
and the minority state ( | 2æ) axial density (blue circles) compared with a 175 nK
Bethe ansatz calculation (solid lines). The dimensionless scaled axial radius
R/(azN0

1/2) is plotted, where R is the position along the bundle of tubes where
the respective density vanishes, N0 is the total number of particles in the central
tube, and az is the axial harmonic confinement length. At P < 0.13 6 0.03, both
radii intersect, indicating that the entire cloud is partially polarized. The data
are in reasonable agreement with the theoretical crossing at slightly higher
polarization P < 0.17.
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partially polarized: for P , Pc the radius of the density difference is
smaller than the minority radius, while the opposite occurs for P . Pc.
From a linear fit to the data, we find Pc 5 0.13 6 0.03. We use the
thermodynamic Bethe ansatz to calculate theoretical density distribu-
tions, and carry out an identical analysis. We find quantitative agree-
ment with the experimental density profiles, with a best-fit temperature
of T 5 175 6 50 nK 5 0.15TF (see Supplementary Information). The
theoretical density profiles yield Pc 5 0.17 with weak temperature
dependence.

Although these density profiles do not directly reveal FFLO correla-
tions, the theoretical consensus is that such correlations should be
present. For example, mean-field calculations29 predict that at
T 5 0.15TF, there should be a range of polarizations near Pc that yield
detectable FFLO order. Our stronger interactions should make the
low-temperature phases even more robust11.

We have created a strongly interacting, two-component Fermi gas
in 1D and measured its phase diagram as a function of polarization.
The system is at sufficiently low temperature to observe three distinct
phases, in agreement with theory. This is an example of an optical
lattice-based quantum simulator that produces a phase diagram of
non-trivial quantum phases. Although we have not directly observed
the FFLO phase, the observed density profiles agree quantitatively with
theories that exhibit the 1D equivalent of FFLO correlations at low
temperature11,29. In the future, we intend to measure the pair momentum
distribution of the partially polarized phase to reveal its non-zero pair
momentum directly.

METHODS SUMMARY
We start from quantum degenerate, spin-imbalanced 6Li Fermi gas in a single-
beam far-off-resonance optical trap16,17, which is then loaded into a crossed-beam
optical dipole trap formed by a pair of retro-reflected beams propagating in the x
and y directions. We turn on the 2D lattice by ramping up the optical trap laser
power and rotating the polarizations of the retro-reflected beams to create stand-
ing waves in two orthogonal directions. The intersection of the standing waves
creates 1D tubes with an energy depth of 12er in the central tube, with vH 5 (2p)
2 3 105 Hz and vz 5 (2p) 200 Hz. At a global polarization P < 0, the total number
of atoms is ,4 3 105, giving a total number of atoms in the central tube of
N < 240 6 20. The column densities of each state and their difference is obtained
from two in situ polarization phase contrast images30 taken in rapid succession and
with different detuning. The temperature is determined by fitting the in situ
density of a balanced spin mixture to a Thomas–Fermi distribution and is mea-
sured to be T , 0.05TF before turning on the 2D lattice and T < 0.09 6 0.03TF

after slowly turning on the lattice and then slowly rotating the polarization back to
the 3D trap configuration. The temperature in the lattice is estimated from the in
situ density distributions.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Preparation. We produce a quantum degenerate, strongly interacting, spin-
imbalanced 6Li Fermi gas using our previously published methods16,17. Starting
from a quantum degenerate gas of 6Li in a single-beam far-off-resonance optical
dipole trap, we control the relative population of two hyperfine states, F 5 1/2,
mF 5 1/2 (state j1æ) and F 5 1/2, mF 5 21/2 (state j2æ), where F is the total spin and
mF is the projection along the quantization axis, by driving radio-frequency sweeps
between them at different powers. The spin mixture is created in a uniform mag-
netic field at 765 G within the broad Feshbach resonance between states j1æ and j2æ
centred at 834 G (refs 25 and 26). Atoms are evaporatively cooled by lowering the
trap depth in the single-beam optical trap. During evaporation, the field is adia-
batically swept to 890 G, on the BCS side of the Feshbach resonance, where the 3D
scattering length a3D 5 29145ao (ao is the Bohr radius). At the end of evaporation,
we turn on a crossed-beam optical dipole trap formed by two orthogonal, retro-
reflected laser beams, with elliptical laser-beam waists (1/e2 radii) of 54mm by
236mm, with the beams propagating in the x–y plane and the long axes of the
ellipses oriented along z. The polarization of each retro-reflected beam is con-
trolled by liquid crystal variable retarders and is perpendicular to that of the
incident beam in the trap configuration. The trap depth is 0.5mK with axial and
radial trapping frequencies of 50 Hz and 153 Hz, respectively. We then turn on the
optical lattice by simultaneously ramping up the laser power and rotating the
polarization of each retro beam to be parallel to its corresponding incident beam,
resulting in a 2D lattice of 1D tubes. The lattice turn-on time constants are 130 ms
for intensity and 70 ms for polarization, with both having smooth error-function-
like trajectories, optimized to minimize heating. The final 1D lattice depth is 12er

(er 5 1.39mK) with radial and axial trapping frequencies in the central tube of
vH 5 (2p)2 3 105 Hz and vz 5 (2p)200 Hz, respectively. After waiting 50 ms, we
take images that record the column densities of each state in the array of 1D tubes.
Under these conditions aH 5 1,720ao, az 5 5.3 3 104ao, and a1D 5 2099ao, where
aH,z 5 (B/mvH,z)

K and a1D is the 1D scattering length defined in ref. 31.
Imaging. The column densities of each state and their difference is obtained from
two in situ phase-contrast polarization imaging30 shots, taken in rapid succession
and with different detunings near the 2S1/2 to 2P3/2 atomic transition. Imaging 1D
gases in situ is problematic owing to high optical densities and heating from the
first laser pulse. The first pulse dissociates atom pairs and the release of binding
energy affects the second image. At 890 G, the binding energy in 1D is ,6mK,
whereas in 3D this field corresponds to the BCS limit where there is little pairing
energy. To minimize heating effects in the second image we use phase-contrast
polarization imaging with short intervals (as short as 5ms) between images (see
Supplementary Information for more imaging details).
Temperature. In the absence of the optical lattice an effective temperature is mea-
sured by fitting finite-temperature Thomas–Fermi distributions to clouds prepared
with P 5 0 (refs 16 and 32). Before turning on the lattice, the effective temperature is
,0.05TF in the shallow trap, where TF is the Fermi temperature of a non-interacting
gas of N1 fermions16. In the lattice, temperature is measured by comparing the
experimental column densities with the theory described in the next section.
The spin-imbalanced attractive 1D gas. Sufficiently far from the confinement-
induced resonance on its attractive side, the 1D spin-imbalanced attractively
interacting Fermi gas may be described by the exactly solvable Gaudin–Yang
model33,34,35 with the Hamiltonian

H~
X

s~1,2

XNs

i~1

p2
is

2m
zg1D

XN1

i~1

XN2

j~1

d(zi1{zj2)

where the 1D coupling constant is related to the 1D scattering length by

g1D~{
2B2

ma1D
. An energy scale is given by the binding energy of the contact inter-

action e~
B2

ma2
1D

. To obtain the equation of state at a finite temperature t 5 kBT/e

(from now on we put e 5 1) we numerically solve a truncated set of the thermo-
dynamic Bethe ansatz equations12,34, given by two nonlinear integral equations
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2
and h~
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2
. We have modified the original equations by

replacing the binding energy of the contact interaction with the true two-body
binding energy EB in a harmonic waveguide in order to have the proper definition
for the chemical potentials. Densities n1,2 are obtained from the solution of two
coupled linear integral equations35 (similar to the equations for the zero-temperature
Bethe ansatz)
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ð?

{?

dkr(k)

This truncation is accurate when thermal fluctuations are unable to break the tightly
bound pairs, that is, when kBT/e= 1 (for a detailed discussion of a similar approxi-
mation see ref. 36). In the experiment, kBT/e < 0.02–0.03, and we explicitly checked
that the higher-order terms in the thermodynamic Bethe ansatz equations are small.
Confinement effects37–39 can modify the interactions between pairs and excess fer-
mions in a way not captured by the Gaudin–Yang model. A study of the three- and
four-body problem carried out in ref. 40 shows that for our experimental parameters,
aH/a3D < 20.19, these confinement effects shift energies by ,10%.

At strong coupling (n1Da1D R 0), the equation of state of the Gaudin–Yang
model reduces to that of a Tonks gas of bosons and a free Fermi gas6,7. This
simplicity hides the fact that there are FFLO correlations in the system, with the
many-body wavefunction changing sign whenever a boson crosses a fermion (see
Supplementary Information).
Calculation of density profiles. For each tube, we use the Thomas–Fermi local
density approximation to calculate the 1D density profiles, but allow the chemical
potential to vary arbitrarily from one tube to the next

n1D
s (r,z)~n1D

s (mc(r){
1
2

mv2
z z2,h(r),t)

where s 5 1, 2. mc(r), h(r) are related to the particle numbers for a tube a distance
r from the central axis by

Ns(r)~

ð?

{?

dzn1D
s (mc(r){

1
2

mv2
z z2,h(r),t)

Numerically inverting this equation, we find the central chemical potentials
mc(r), h(r). Then Ns(r) is obtained from the experimental data by inverse Abel
transforming the radial profiles

nr,s(y)~

ð?

{?

dznc,s(y,z)~
4

l2

ð?

{?

dxNs(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2zy2

p
) through

Ns(r)~{
l

4p

ð?

r

dy
Lync,s(y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2{r2
p

where nc,s(y,z)~
4

l2

ð?

{?

dxn1D
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2zy2

p
,z

� �
is the column density. We fit the

radial densities nr,s(y) to a simple functional form, and analytically perform the
integrals. We use the extracted Ns(r) to normalize our radii in Fig. 3.
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