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Detecting π-phase superfluids with p-wave symmetry in a quasi-one-dimensional optical lattice
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We propose an experimental protocol to study p-wave superfluidity in a spin-polarized cold Fermi gas tuned by
an s-wave Feshbach resonance. A crucial ingredient is to add a quasi-one-dimensional optical lattice and tune the
fillings of two spins to the s and p band, respectively. The pairing order parameter is confirmed to inherit p-wave
symmetry in its center-of-mass motion. We find that it can further develop into a state of unexpected π -phase
modulation in a broad parameter regime. Experimental signatures are predicted in the momentum distributions,
density of states, and spatial densities for a realistic experimental setup with a shallow trap. The π -phase p-wave
superfluid is reminiscent of the π state in superconductor-ferromagnet heterostructures but differs in symmetry
and physical origin. The spatially varying phases of the superfluid gap provide an approach to synthetic magnetic
fields for neutral atoms. It would represent another example of p-wave pairing, first discovered in 3He liquids.

DOI: 10.1103/PhysRevA.94.031602

The coexistence of singlet s-wave superconductivity with
ferromagnetism is a long-standing issue in condensed mat-
ter physics [1]. One of the most interesting phenomena
is the so-called π phase achieved in artificially fabricated
heterostructures of ferromagnetic and superconducting lay-
ers [2–5], where the relative phase of the superconducting
order parameter between neighboring superconducting layers
is π . The π state offers different ways for studying the
interplay between superconductivity and magnetism and has
a potential application for quantum computing in building
up superconducting qubits through the π -phase shift [6,7].
Different settings for its realization have been discussed, such
as in high Tc superconductors [8–10] and in spin-dependent
optical lattices [11].

In this Rapid Communication, first we show that an
unconventional p-wave π -phase superfluid state emerges in
the experimental system of a Fermi gas in a quasi-one-
dimensional (1D) optical lattice [12]. This π -phase superfluid
would not only represent another interesting example of a
long-sought p-wave superfluid, but would also be useful for
creating synthetic magnetic fields for neutral atoms. Then
we propose experimental protocols for observing this state
by tuning the spin polarization. This is reminiscent of the
π state in superconductor-ferromagnet heterostructures [1].
However, the π -phase shift of the superfluid gap here arises
from a different mechanism—the relative inversion of the
single-particle band structures (s- and p-orbital bands) of
the two spin components involved in the pairing. As a result
of this pairing mechanism, such a π -phase superfluid state
has a distinctive feature—a center-of-mass (COM) p-wave
symmetry, which distinguishes it from other π states in
previous studies [1,11]. We map out the phase diagram as
a function of controllable experimental parameters—atom
density and spin polarization. There is a large window
for the predicted COM p-wave π -phase superfluids in the
phase diagram at low density and it occurs at higher critical
temperatures in relative scales, enhancing its potential for
experimental realization. Note that in a realistic experimental
setup, an external trapping potential is required. For this case,

several striking experimental signatures are predicted: (1) A
locally detectable momentum distribution [13] through time
of flight shows dramatic changes in its shape resulting from
the pairing between different parity orbitals (i.e., s and p

orbitals); (2) distinctive features are found in the occupied
local density of states (LDOS), such as the existence of
a finite gap and midgap peak, which can be detected via
spatially resolved radio-frequency (rf) spectra [14,15]; and
(3) the phase boundary between the superfluid and normal
states can be determined by in situ phase-contrast imaging of
the density distributions [12]. The orbital degrees of freedom
play an essential role here; recently the research of higher
orbital bands in optical lattices has evolved rapidly [16]. For
p-band fermions with attractive interactions, the chiral center-
of-mass p-wave superfluidity in two dimensions (2D) [17],
superfluids similar to the Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) [18], and an orbital hybridized topological Fulde-
Ferrell superfluid [19] were found in theoretical studies. As
we shall show with the model below, the pairing composed of
different parity orbital fermions will lead to unexpected COM
p-wave π -phase superfluids.

Effective model. Consider a Fermi gas with s-wave attrac-
tion composed of two hyperfine states, to be referred to as spin
↑ and ↓, loaded in a strongly anisotropic three-dimensional
(3D) cubic optical lattice. In particular, we consider the lattice
potential VOL = ∑

α=x,y,z Vα sin2(kLrα) with lattice strengths
Vz = Vy � Vx , where kL is the wave vector of the laser fields.
As shown in Figs. 1(a) and 1(b), the lowest two energy levels
are s- and px-orbital states. In the following, the px-orbital
state is simply referred to as the p orbital. Due to the strong
confinement of the lattice potential in the y and z directions,
the system is dynamically separated into an array of quasi-one-
dimensional tubes. A key condition proposed here is to have a
strong spin imbalance [20–22] such that the spin ↑ and ↓ Fermi
levels reside in the s- and p-orbital bands, respectively [e.g.,
Figs. 1(a) and 1(b)], in order to hybridize the spin and orbital
degrees of freedom. In Sec. S3 of the Supplemental Material
[23], a possible experimental realization of our proposal is
discussed in detail by taking 6Li atoms as a specific example.
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FIG. 1. (a) and (b) The single-particle energy spectrum of the
lattice potential along the kx axis in the units of recoil energy Er for
the lowest three bands through a plane-wave expansion calculation,
when Vx = 5Er , Vy = Vz = 18Er . Here we propose to fill spin
↓ fermions to the p band and spin ↑ to the s band, as shown
in (b) and (a), respectively. (c) Zero-temperature phase diagram
as a function of lattice filling and polarization when tp/ts = 8,
t ′
p/ts = 0.05, t ′

s/ts = 0.05, and U/ts = −9. pπSF and pFFLO stand
for different modulated COM p-wave superfluid states with the
center-of-mass momentum of Cooper pairs located at Q = (π/a,0,0)
and Q �= (π/a,0,0), respectively. NG-I refers to a normal gas (without
pairing) where the |s↑〉 band is fully filled while the |p↓〉 band is
partially filled. NG-II is another kind of normal state where the |s↑〉
band is partially filled while the |p↓〉 band is nearly empty. The
gray area is forbidden due to the Fermi statistics constraint on the
lattice filling. The gray line stands for the empty state. (d) Synthetic
magnetic flux in a ladder system composed of two π -phase superfluid
chains (see Sec. S4 in the Supplemental Material [23]). An effective
anticlockwise π flux is generated for both spin ↑ and ↓ fermions.
Here we choose ts = tp = t̃ , μν,σ = 0, and interchain tunnelings are
absent due to the large energy offset between neighboring sites along
the y direction. The “±” in front of t̃ are for spin ↓ and ↑, respectively.

In the tight-binding regime, the system is described by a
multiorbital Fermi-Hubbard model

H = −ts
∑

r

C
†
s↑(r)Cs↑(r + �ex) + tp

∑

r

C
†
p↓(r)Cp↓(r + �ex)

− t ′s
∑

r

[C†
s↑(r)Cs↑(r + �ey) + C

†
s↑(r)Cs↑(r + �ez)]

− t ′p
∑

r

[C†
p↓(r)Cp↓(r + �ey) + C

†
p↓(r)Cp↓(r + �ez)] + H.c.

−μ↑
∑

r

C
†
s↑(r)Cs↑(r) − μ↓

∑

r

C
†
p↓(r)Cp↓(r)

+U
∑

r

C
†
s↑(r)Cs↑(r)C†

p↓(r)Cp↓(r), (1)

where ts and tp are the hopping amplitudes along the x

direction for the s- and p-band fermions, respectively, while t ′s
and t ′p are the hopping amplitudes along the y and z directions.
All the hopping amplitudes as introduced in Eq. (1) are positive
and the relative signs before them are fixed by the parity

symmetry of the s- and p-orbital wave functions. Cνσ (r) is
a fermionic annihilation operator for the spin σ component (↑
and ↓) fermion with the localized ν (s and p) orbital located
at the lattice site r, and μσ is the corresponding chemical
potential. The on-site interaction [last term in Eq. (1)] is of the
density-density type and arises from the interaction between
two hyperfine states, which is highly tunable through the
s-wave Feshbach resonance in ultracold atomic gases. Here
we assume that the interaction strength is much smaller than
the band gap. Therefore, the s-band fully filled spin-down
fermions are dynamically inert and are not included in the
Hamiltonian [Eq. (1)]. In this work, we focus on the case
with attractive interaction where superfluidity is energetically
favorable.

Phase diagram at zero temperature. In order to study the
superfluidity in our system, we apply the mean-field approxi-
mation and assume the superfluid pairing is between different
parity orbitals, i.e., between |s↑〉 and |p↓〉 states, in a gen-
eral form, �(r) = U 〈Cp↓(r)Cs↑(r)〉 = ∑M

m=1 �m exp(iQm ·
r), where M is an integer. A fully self-consistent mean-
field calculation for the space-dependent order parameter is
numerically challenging. We restrict our discussion to two
forms of a variational ansatz, which are the Fulde-Ferrell (FF)-
like and Larkin-Ovchinnikov (LO)-like ansatz with the order
parameter � exp(iQ · r) and � cos(Q · r), respectively. This
variational approach adopted here was previously justified by
density-matrix-renormalization-group methods [24]. Here we
choose Q pointing along the x direction, say, Q = Q(1,0,0),
to fully gap the Fermi surface of this quasi-1D system.

From our calculation (see Sec. S1 in the Supplemental
Material [23]), we find that the free energy of the analogous
LO states is always lower than that of the FF-like phases,
except at Q = (π/a,0,0) with a the lattice constant, where
the FF- and LO-like ansatz are equivalent. So the ground
state of the system is a COM p-wave superfluid state with
modulated pairing order parameter ∝ cos(Q · r), which breaks
the translational symmetry spontaneously. Qualitatively, that
is because the ±Q pairing opens gaps on both sides of the
Fermi surface, taking advantage of the available phase space
for pairing, while the FF states only open a gap on one side.
Since the dispersion of the p band is inverted with respect
to that of the s band, the pairing occurs between fermions
with center-of-mass momentum Q � kF↑ + kF↓, where kF↑
and kF↓ are the two relevant Fermi momenta. When the
occupation numbers of |s↑〉 and |p↓〉 states are equal, the
π -phase superfluid state with Q = (π/a,0,0) is the ground
state of the system. In real space, the pairing order parameter
is a function of staggered signs along the x direction and obeys
�(r) = −�(r + aex) when combined with the periodicity
�(r) = �(r + 2aex). The π -phase shift of the superfluid gap
here arises from the relatively inverted single-particle band
structures directly, unlike in the conventional FFLO state [25].
The predicted π -phase superfluid state is found to be quite
robust. Even when the occupation number difference between
|s↑〉 and |p↓〉 states is finite, the π -phase superfluid state is
still the ground state. Particularly in the low-density region
ns + np � 1, there is a large window for this π state.

When the polarization p = ns↑−np↓
ns↑+np↓

is sufficiently large,
the COM momentum will become incommensurate with the
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underlying lattice, and this incommensurate COM p-wave
state will be referred to as pFFLO. As shown in Fig. 1(c),
a phase diagram as a function of atom density and polarization
has been obtained. It is worth noting that a large regime of
parameters is found to exist in the phase diagram for the
predicted p-wave pairing phases, making their experimental
realization simpler.

Characteristic signatures of p-wave π -phase superfluids.
The most distinctive feature of the predicted π state is
that the pairing order parameters are spatially modulated
and have p-wave symmetry in the COM motion. This
leads to several characteristic signatures. (A) The single-
particle momentum distributions exhibit unique properties
in the following two aspects. The first one is the shape
of the density distribution in time of flight. We calculate
the spin-resolved density distribution in the time-of-flight
measurement assumed ballistic expansion as 〈ñνσ (x)〉t =
( m

�t
)2 ∑

k̃y ,k̃z
φ∗

ν (k̃)φν(k̃)〈C†
νσ (k)Cνσ (k)〉, where k̃ = mr/(�t)

with t the time of flight, φν(k̃) is the Fourier transform of
the ν-orbital Wannier function φν(r), and k = k̃ mod G is
the momentum in the first Brillouin zone (BZ) corresponding
to k̃(G is the primitive reciprocal lattice vector). Here the
defined density distribution of spin-down fermions does not
include the background fermions in |s↓〉. Since the interaction
strength considered here is much smaller than the band gap,
fermions in |s↓〉 are not involved in the predicted paired
states. Therefore, the contribution from these fermions to
the momentum distributions can be eliminated by subtracting
off the density distribution of (0,k̃y,k̃z) from that of other
(k̃x,k̃y,k̃z), when choosing a certain k̃ (or equivalently a
fixed t). As shown in Fig. 2, the highest peak for p-band
fermions is shifted from zero momentum resulting from the
nontrivial profile of the p-wave Wannier function superposed
on the density distributions. The momentum distribution of
superfluids at zero temperature becomes smooth, such that
there is no longer a sharp edge/drop as in the normal state
(Fig. 2). After a characteristic expansion time [26], these
momentum distributions can be detected via a time-of-flight
measurement. The second aspect is a mirror-translational
symmetry of the axial density distributions of |s↑〉 and |p↓〉
fermions for the π -phase superfluid state. Following the stan-
dard analysis [12,27], we define the axial density distribution in
momentum space as na

νσ (kx) = 1
(2π)2

∫
dkydkz〈C†

νσ (k)Cνσ (k)〉
for |s↑〉 and |p↓〉 fermions, respectively. We have ana-
lytically proven the relation na

s↑(kx) = na
p↓(π/a − kx) (see

Sec. S2 in the Supplemental Material [23]). It is also
confirmed in our numerics as shown in Fig. 3(c). These
signatures can be detected through polarization phase-contrast
imaging [12].

(B) The COM p-wave superfluid state here has a spatially
varying pairing order parameter. This leads to crucial differ-
ences in the Bogoliubov quasiparticle spectra. A finite-energy
gap is shown in the spin-resolved occupied density of states
(DOS) for the π -phase superfluids [Fig. 3(a)]. Such spin-
resolved DOS is calculated as ρνσ (E) = 1

2

∑
n[|uνσ

n |2δ(E −
ζn) + |vνσ

n |2δ(E + ζn)], where (uνσ
n ,vνσ

n )T is the eigenvector
corresponding to the eigenenergy ζn of the Hamiltonian Eq. (1)
under a mean-field approximation and the summation runs
over all the eigenenergies. This finite gap in the DOS gives
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FIG. 2. Prediction of spin-resolved density distribution in time of
flight, in (a) for |s↑〉 fermions, while in (b) for |p↓〉 fermions. The
dashed red and solid black lines show the density defined in the main
text along the k̃x axis for superfluid and normal phases, respectively.
The dashed-dotted lines show the intensities of the Wannier orbital
functions ∝|φν(k̃x)|2 for comparison. Other parameters are ns↑ = 0.5,
np↓ = 0.5, tp/ts = 8, t ′
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s/ts = 0.05, and U/2ts = −12

for superfluids or 0 for normal states. The time-of-flight densities
measure the momentum distributions of the corresponding phases.
The absence of sharp edges is a signature of the superfluid phase at
zero temperature, which lacks a Fermi surface due to the opening of
an energy gap.
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FIG. 3. Top row shows occupied density of states (DOS) ρs↑(E),
(a) showing the finite-energy gap for the π -phase superfluid state
and (b) showing the midgap peak for pFFLO resulting from Andreev
bound states. Bottom row show the axial density distributions of |s↑〉
and |p↓〉 fermions in momentum space for (c) π phase and (d) pFFLO.
The red and blue solid lines show na

s↑(kx) and na
p↓(kx), respectively,

while the blue dots show na
p↓(Q − kx). See the main text for the

definition of ρs↑(E) and na
νσ (k). Since there is a large polarization

for the pFFLO state in (b), which can be considered as an effective
external magnetic field, it leads to a shift of the density of states.
Therefore, the midgap peak in (b) is not at E = 0. In (a) and (c), we
choose ns↑ = 0.5 and np↓ = 0.5, while in (b) and (d), ns↑ = 0.52 and
np↓ = 0.45. Other parameters are the same as in Fig. 1.
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direct evidence of superfluidity, as distinguished from the
pFFLO state, where a midgap peak exists in the DOS, as
shown in Fig. 3(b). This midgap peak signifies the emergence
of Andreev bound states [28]. The energy gap and midgap
peak are found in the spin-resolved DOS for both |s↑〉
and |p↓〉 fermions. For example, the DOS of |s↑〉 fermions
is shown in Fig. 3. Such signatures in the DOS can be
detected via radio-frequency (rf) spectroscopy [14,29,30],
giving a plausible experiment probe of the predicted p-wave
superfluids.

(C) The predicted COM p-wave superfluid arises directly
from a purely s-wave two-body attraction. This leads to a
significantly improved transition temperature compared to
other conventional relative p-wave superfluids [31,32]. It
is confirmed by our direct calculation of finite-temperature
phase transitions for the model Hamiltonian in Eq. (1) (see
Supplemental Fig. S1 [23]). For instance, consider the lattice
potential in Fig. 1(a) with a = 532 nm. The mean-field
superfluid transition temperature can reach nearly 60 nK
when the s-wave scattering length between 6Li atoms is
as � 326a0 [33], where a0 denotes the Bohr radius. Further
increasing as , to around 600a0, the transition temperature
rises to ∼200 nK, or even higher. These mean-field superfluid
transition temperatures correspond to 0.03TF and 0.11TF ,
respectively, in which μavg = μ↑+μ↓

2 is taken as the referenced
Fermi energy (hence Fermi temperature TF ).

Besides the striking experimental signatures of the pre-
dicted π -phase superfluids discussed above, the spatially
varying phases of the superfluid gap can also be used to
create synthetic magnetic fields for neutral atoms as shown
in Fig. 1(d) (see details in Sec. S4 in the Supplemental
Material [23]). This scheme is essentially different from
previous studies such as rotation [34–37] or Raman-assisted
tunneling [38,39], since here the effective magnetic flux
originates from interactions.

Experimental signatures in a trap. In the following, we will
discuss the effect of a harmonic trapping potential superposed
on the optical lattices. Assuming that the harmonic trapping
potential is sufficiently shallow compared to the lattice depth,
it is natural to apply the local density approximation (LDA)
and let the chemical potential vary as a function of the
position. Here we consider the trapping potential in the x

direction. The normal phases (NG-I and NG-II) exist when
either the |s↑〉 fermions fully fill the band or the |p↓〉 band
is empty. Therefore, the detectable density profiles of these
fermions through in situ phase-contrast imaging [12] (e.g.,
Fig. 4) determines the phase boundary between superfluid
and normal states. Figure 4 shows various shell structures
found in our calculation. When the polarization is small, the
region in the center of the trap is the π -phase superfluid.
By increasing the radius from the trap center, the |p↓〉 band
becomes empty and the system evolves to a normal-gas shell
surrounding the superfluid center. Upon increasing the spin
polarization, in the center region of the trap, the |s↑〉 fermions
fully fill the band and the system is no longer a superfluid,
but a normal gas. By moving further away from the trap
center, the |p↓〉 band gets empty, and the system becomes
a normal gas again. In between exists a pFFLO superfluid
shell. Furthermore, since the superfluid gap leads to crucial
differences in the occupied local density of states (LDOS)

(i)

FIG. 4. (a)–(h) Shell structures with a background trapping
potential. The superfluid gap � and density profile ns↑ and np↓ of
|s↑〉 and |p↓〉 fermions are shown as a function of the coordinate
x, when tp/ts = 8,t ′

p/ts = 0.05, t ′
s/ts = 0.05, and U/ts = −9. The

polarization P = Ns↑−Np↓
Ns↑+Np↓ is fixed at 0.3 and 0.03 for the first and

second row, respectively. The frequency of the harmonic trap is
chosen to be 120 Hz. (i) The occupied local density of states
(LDOS) of the spin-down fermions in a p-wave π -phase superfluid.
Other parameters are the same as in the second row. Here the
spin-resolved LDOS is defined as ρ ′

νσ (E,x) = 1
2

∑
n[|uνσ

n (x)|2δ(E −
ζn(x)) + |vνσ

n (x)|2δ(E + ζn(x))], where [uνσ
n (x),vνσ

n (x)]T is the local
eigenvector corresponding to the eigenenergy ζn(x) of the locally
homogenous subsystem, when using the LDA.

between superfluid and normal phases, it provides another
plausible experiment probe, measured using spatially resolved
rf spectra [14,15]. In the presence of the trapping potential as
done in many atomic experiments, the inhomogeneity can be
modeled using the LDA. We have found that the π -phase and
pFFLO superfluid shells are characterized by the energy gap
and midgap peak in the LDOS, respectively. For example,
Fig. 4(i) shows a finite gap in the LDOS for the p-wave
π -phase superfluid, distinguished from the normal region. To
summarize, measurements in the spatial (density distribution)
and energy (LDOS) space are predicted to reveal characteristic
signatures. Besides, the momentum distribution (e.g., Fig. 2)
can be measured locally [13] in the presence of a harmonic
trap. It presents another possible observation of the predicted
superfluids in momentum space.

Conclusion. We propose that the pairing between different
parity orbital fermions can lead to a p-wave π -phase superfluid
state. The origin of the π -phase shift of the pairing order
is distinct from the previous studies of π states. We show
that the predicted π phase here occurs in a broad range
in the phase diagram, especially in the low-density region.
Increasing the polarization, we find a phase transition from the
π -phase state to an incommensurate COM p-wave superfluid.
Experimental signatures of the predicted p-wave superfluid
states are calculated in the momentum density distribu-
tions, density of states, and real-space density profiles when
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considering a background trap. These should be useful for fu-
ture experiments to identify these forms of p-wave superfluid
states.
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