
PHYSICAL REVIEW A 86, 023606 (2012)

Enlarging and cooling the Néel state in an optical lattice
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We propose an experimental scheme to favor both the realization and the detection of the Néel state in a
two-component gas of ultracold fermions in a three-dimensional simple-cubic optical lattice. By adding three
compensating Gaussian laser beams to the standard three pairs of retroreflected lattice beams, and adjusting the
relative waists and intensities of the beams, one can significantly enhance the size of the Néel state in the trap,
thus increasing the signal of optical Bragg scattering. Furthermore, the additional beams provide for adjustment
of the local chemical potential and the possibility to evaporatively cool the gas while in the lattice. Our proposals
are also relevant to efforts to realize other many-body quantum phases in optical lattices.
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I. INTRODUCTION

Cold atom experiments provide a uniquely versatile plat-
form for realizing and probing strongly correlated quantum
phases of matter. However, no experiment to date has measured
a phase in an optical lattice whose ordering is set by a magnetic
scale such as the superexchange energy. Experiments have
realized Mott insulators of both bosons [1] and fermions [2,3],
but the temperatures achieved are higher than those required
for magnetic ordering [4–7]. Furthermore, the lack of a heat
bath imposes restrictions on experimental schemes [8–11],
in which the entropy must be pushed out from the center of
the trap where the phase of interest is realized. In the case of
gapped phases, equilibration is impeded by the long timescales
for heat and mass transport [12,13]. Finally, an experimental
setup should strive to have the phase of interest occupy as large
a region of the trap as possible to enhance the detectability of
the ordering, for example, by Bragg scattering of light [14].

In this work, we propose an all-optical scheme that
addresses these issues for the Néel phase of ultracold fermions
in a simple-cubic optical lattice and discuss its relevance to
other efforts to realize strongly correlated many-body quantum
phases. The objective is to maximize the size of the phase of
interest in the trap to enhance the Bragg signal, realize the Néel
phase in the region of parameter space that was previously
calculated to have maximal superexchange interactions [15],
and provide a setup that will allow for cooling when the center
of the trap becomes a Mott insulator, for which heat and
mass transport are inhibited. We show that these objectives
can all be met simply by introducing three compensating laser
beams on top of the three retroreflected lattice beams. These
compensating beams have Gaussian waists different than those
of the lattice beams and are oppositely detuned, so that if the
lattice beams generate an attractive potential for the atoms,
the compensating beams are repulsive, and vice versa. The
compensating beams allow the overall chemical potential of
the system to stay in the gap of the phase of interest over a

larger fraction of the cloud. We propose to do this in a manner
different than that analyzed in Ref. [8], where the trap potential
was flattened by making it either quartic or something close to
a square well. In both of these cases the walls of the trap are
made steeper when the bottom is made flatter, and as a result
the number of atoms in the outer gapless part of the cloud
is reduced, making the system very sensitive to variations in
the total atom number. In our setup, the confining potential
is smooth and decays as a Gaussian at large distances. The
trap is filled so that many atoms remain in the outer gapless
“reservoir” parts of the cloud, as discussed below. Thus the
system will not be sensitive to small variations in the total atom
number. Furthermore, our setup allows for direct evaporative
cooling of the system while in the lattice.

Furthermore, our setup allows for direct evaporative cooling
of the system while in the lattice.

II. THE MODEL

We consider two-component ultracold fermions of mass m

in a simple-cubic optical lattice interacting repulsively via
a Feshbach resonance, but far enough from the Feshbach
resonance to apply the first-order Born approximation. We
call d the lattice spacing and as the s-wave scattering length,
and we measure energy in units of the recoil energy ER =
h̄2k2

R/(2m) = h̄2π2/(2md2), where kR = π/d is the recoil
momentum. The Hamiltonian is

H =
∑

σ

∫
dr�̂†

σ (r)

[
−h̄2∇2

2m
+ V (r)

]
�̂σ (r)

+ g

∫
drρ̂↑(r)ρ̂↓(r), (1)

where r = {x,y,z}; �̂σ (r) (�̂†
σ (r)) is the fermionic annihilation

(creation) operator of spin σ at position r; ρ̂σ (r) = �̂†
σ (r)�̂σ (r)

are the density operators; and V (r) is the total potential felt
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by the atoms. The first-order Born approximation gives g =
4πh̄2as/m.

The total potential V (r) is composed of an external potential
Vext(r), three lattice beams, and three compensating laser
beams. The external potential Vext(r) (which may be zero)
is generally provided by optical dipole forces and varies over
a length scale much larger than all the other length scales
in the system. The three lattice beams and compensating
beams are oriented along the x, y, and z axes. We call
VLC(x; y,z) = VL(x; y,z) + VC(x; y,z) the sum of an optical
lattice along the x direction, produced by a retroreflected
Gaussian laser beam and a non-retroreflected Gaussian beam
along the x direction, that serves to partially compensate the
overall average potential of the lattice beams:

VL(x; y,z) = ∓V0L exp

[
−2(y2 + z2)

w2
L

]
sin2 (kRx), (2)

VC(x; y,z) = ±V0C exp

[
−2(y2 + z2)

w2
C

]
. (3)

The intensities V0L and V0C of the lattice and compensating
beams are positive. The upper signs correspond to having
attractive lattice beams and repulsive compensating beams,
and the lower signs correspond to the opposite situation.
Generating a three-dimensional simple-cubic optical lattice
requires three copies of the retroreflected lattice and compen-
sating beams, in the three orthogonal directions. The lattice
beams alone lead to a simple-cubic optical lattice in a region
of space that is limited by the Gaussian profile of the beams.
wL and wC are the waists of the lattice and compensating
beams, respectively, and we define their ratio as α = wL/wC .
The total potential is given by

V (r) = Vext(r) + VLC(x; y,z)

+VLC(y; z,x) + VLC(z; x,y). (4)

The position and size of the different phases in this trap are
determined by combining a calculation of the phase diagram of
a homogeneous system with the local-density approximation
(LDA). In previous work [15], two of us studied the phase
diagram of this model in the Hartree approximation at zero
temperature with a potential V0L[sin2(kRx) + sin2(kRy) +
sin2(kRz)]. To relate it to the present work, we assume that
kRwC � 1 and kRwL � 1, so that the Gaussian envelopes of
the potentials vary much more slowly than the lattice spacing.
Under the LDA, the potential at each point in the trap is a sum
of sinusoidal potentials plus an overall shift, μcon(x,y,z), that
is the local minimum of the lattice potential:

V (r) = μcon(x,y,z) + V0x(y,z) sin2(kRx + φx)

+V0y(x,z) sin2(kRy + φy) + V0z(x,y) sin2(kRz + φz),

(5)

where φx , φy , and φz are relative phases which are unimportant
in the LDA. We neglect the spatial variations of the lattice
amplitudes and μcon over the period of the lattice oscilla-
tion, but we do account for their variation over the longer
scales given by the beam waists wL and wC . We choose
the magnitudes of the sinusoidal parts of the potential to
be positive: V0x(y,z), V0y(z,x), and V0z(x,y) > 0. This can
be done whether the lattice beams are repulsive or attrac-

tive by an appropriate choice of μcon(x,y,z), φx , φy , and
φz, since, for example, −V0x(y,z) sin2(kRx) = −V0x(y,z) +
[V0x(y,z)] sin2(kRx − π/2), and we can absorb −V0x(y,z) into
μcon(x,y,z) and −π/2 into φx .

The density in the trap is set by choosing an overall chemical
potential, μ, for the system, assuming the system is at global
equilibrium at zero temperature. Within the LDA, the system
sees the potential V0x(y,z) sin2(kRx) + V0y(x,z) sin2(kRy) +
V0z(x,y) sin2(kRz) and has a local chemical potential given
by μ − μcon(x,y,z). At each point in the trap the Hartree
calculation takes the local chemical potential and lattice
intensity and returns local properties such as density,
staggered magnetization, and the Mott-Hubbard gap. The
Hartree calculations were restricted to the case of equal lattice
intensities, V0x = V0y = V0z, which occurs along four straight
lines in the {1,±1,±1} spatial directions. We call V

diag
0L (r) the

intensities of the lattice beams, and μ
diag
con the chemical potential

shift due to the lasers along the {±1,±1,±1} directions,
where r =

√
x2 + y2 + z2. They have the following form:

V
diag

0L (r) = V0L exp

(
− 4r2

3w2
L

)
, (6)

Attractive lattice beams:

μdiag
con (r) = 3

[
V0C exp

(
− 4r2

3w2
C

)
− V0L exp

(
− 4r2

3w2
L

)]
, (7)

Repulsive lattice beams:

μdiag
con (r) = 3

[
−V0C exp

(
− 4r2

3w2
C

)]
. (8)

We choose the zero of energy so Vext = 0 in the lattice
(indeed we assume Vext is negligible in regions where other
laser potentials are sizable). We define a dimensionless
parameter, β, to characterize the ratio of intensities of
the lattice and compensating beams: (V0C/ER) exp(− 4r2

3w2
C

) =
β[(V0L/ER) exp(− 4r2

3w2
L

)]α
2
, so that

V0C/ER = β(V0L/ER)α
2
. (9)

Thus β gives the ratio of the intensities of the compensating and
lattice beams at the point where V

diag
0L (r) = ER . The potential

on the z = 0 surface is depicted schematically in Fig. 1(b).

III. THE NÉEL STATE AND ITS RESERVOIRS

The Hartree calculation in the lattice gives the regions
of parameter space where the ground state is the Néel AF
phase, and the highest-energy occupied and lowest-energy
unoccupied Hartree single-atom states provide an estimate of
the Mott-Hubbard gap (neglecting spin-wave corrections). If
the chemical potential lies anywhere within this gap, the phase
will be AF. Surrounding this AF phase is a “reservoir” of
atoms in a paramagnetic Fermi gas. We want the atoms in this
reservoir to be mobile so that they can carry away entropy from
the part of the trap containing the AF phase. Thus, we want
the optical lattice to remain relatively weak in the reservoir.

We can distinguish between three different types of reser-
voir (Fig. 1): RI is in the three-dimensional part of the lattice,
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FIG. 1. (Color online) Phases and potentials in the trap. (a)
Schematic representation of the distribution of phases. The three
lattice beams run along the x, y, and z axes. They meet and form
a simple-cubic lattice at the center. The antiferromagnetic (AF)
Mott-insulating phase with filling of one atom per lattice site is
found here. Surrounding the AF phase in the region where all three
lattice beams are non-negligible is a paramagnetic Fermi gas phase
RI (“Reservoir I”). The regions where only one of three lattice beams
has significant intensity are denoted RII. The region where all lattice
beams are negligible is denoted by RIII. Atoms can be contained in
RIII by an additional confining Vext(r). (b) Total potential at z = 0:
V (x,y,z = 0). Compensating beams, of optical potential opposite to
the lattice beams, run along the x, y, and z axes to maximize the size
of the AF region.

i.e., in the region where all lattice and compensating beams
are non-negligible; RII represents the six reservoirs in the
regions where the beam intensities are appreciable in only
one direction, corresponding to taking one of coordinates |x|,
|y|, or |z| large compared to the beam waists while leaving the
other two small enough to remain within the beam; and RIII is
the reservoir outside of all of the beams.

The parameters in the potential allow for significant
freedom in tailoring the distribution of phases in the trap.
As one goes along one of the diagonal directions away from
the origin, the amplitude of the lattice decays according to
Eq. (6), which sets the local effective amplitude V

diag
0L of the

simple-cubic optical lattice. There is no need to specify the
waist of the lattice beam within the LDA, as this simply sets
the linear size of the different phases in the trap. The parameters
that must be chosen are the ratio of beam waists α and the ratio
of the intensities of the lattice and compensating beams β, as
defined in Eq. (9).

The chemical potential μ can be directly related to the
density in the region RIII where all laser potentials, except
possibly for Vext(r), are zero (see Fig. 1). If μ � Vext(r) then
RIII is empty. For μ � Vext(r) the Hartree approximation gives
the local density in RIII:

[μ − Vext(r)]/ER = 1

π2
(3π2nd3)2/3 + 8

π

as

d
nd3. (10)

IV. OPTIMIZING THE PARAMETERS

The parameters of the system should be chosen to maximize
the size of the phase of interest and create optimal conditions
for the realization of the phase. The lattice depth which
maximizes the Hartree estimate of the effective AF exchange
JH , thus giving the fastest equilibration time scales and
maximum Néel temperature, for a given interaction strength
as , was estimated in previous work [15] and is plotted in
Fig. 2 as a function of lattice depth for the interaction strengths
considered in this work: as = 0.1d and as = 0.06d. We also
found that the lattice depth which maximizes the entropy
of the Néel state, in a calculation that neglects terms in the
Hamiltonian beyond the Hubbard model [16], is close to this
optimal AF exchange lattice depth. Therefore, the center of
the trap should be at a lattice depth close to this optimal lattice
depth. The AF phase should also occupy as large a volume as
possible in the trap.

Figure 3 schematically depicts the phases encountered in
going along a diagonal from r = 0, where the lattice is deepest,
to the edge of the trap, where the lattice depth goes to zero.
Figures 3(a) and 3(b) show the cases of lattice potentials with
no compensation, while Figs. 3(c) and 3(d) show two cases

as d 0.1

as d 0.06

0 2 4 6 8
V 0 L

diag
E R

0

0.01

0.02

0.03

H E R

FIG. 2. (Color online) Plot of the Hartree estimate of the effective
AF exchange JH in a simple-cubic optical lattice with lattice depth
V

diag
0L , for interaction strengths as = 0.1d (blue) and as = 0.06d (red),

where d is the lattice spacing. JH is twice the difference in energy
per bond between the AF and ferromagnetic states, obtained in the
Hartree approximation (see Ref. [15] for details). A large JH leads
to a large ordering temperature and fast time scales for equilibration
and entropy transport. The highlighted points (orange) correspond
to the maximum of JH as a function of V0 for a given interaction
strength as/d . Employing the local-density approximation, the trap
shown in Fig. 1 is simple-cubic along the diagonal directions with
lattice depth V

diag
0L decreasing as one leaves the trap center. Thus by

arranging to have V
diag

0L be close to the value that maximizes JH over
a large portion of the trap, the conditions for realizing the Néel phase
are optimized.
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FIG. 3. (Color online) Phases along the diagonal direction (schematic). The horizontal axes denote the radial coordinate r = √
x2 + y2 + z2.

The red lines are schematic depictions of the potential along the diagonals: V (±x,±y, ±z). The dashed lines indicate the value of the overall
chemical potential μ. The red stars denote the lowest state of the system, within a local-density approximation. If μ lies below the red stars,
the system is in the vacuum. The shaded blue regions correspond to the AF Mott insulator phase. For μ above the red stars but outside the
shaded blue region, the gas is a paramagnet, which we call RI where the lattice potential is non-negligible. RIII is the region where all lattice
potentials are negligible and is occupied only if μ > 0. There are four general classifications: (a) attractive lattice without compensation,
(b) repulsive lattice without compensation, (c) attractive or repulsive lattice with compensation and RIII is nonempty, and (d) attractive or
repulsive lattice with compensation and RIII is empty. These classifications are depicted more quantitatively in Figs. 4–8. With compensation,
the AF phase has its largest possible size when μ is set so it coincides with the point where the Hubbard gap closes; this case is shown here.
In the case of panel (d), μ is chosen to be just below the zero of energy. This situation enables evaporative cooling, as particles with energies
above zero correspond to excitations and are able to leave the trap. In panel (c), the system is in thermal contact with the outside reservoir, RIII.
The temperature of the system in equilibrium is set by the temperature of RIII, which itself may be evaporatively cooled during the experiment.

of compensated lattice potentials. Without compensation the
chemical potential within the AF phase depends strongly on
the lattice depth, and consequently, the AF phase occupies a
narrower region of the trap. One desired effect of compensation
is to flatten the chemical potential of the AF phase with varying
lattice depth, in order to enlarge the AF region. In addition, as
shown in Figs. 3(c) and 3(d), compensation allows adjustment
of μ with respect to E = 0 (the potential outside of the lattice).
For μ slightly less than zero, RIII is empty, and atoms may
evaporate from the edges of the lattice, while for μ slightly
above zero, RIII is occupied and forms a thermal reservoir that
may itself be evaporatively cooled and equilibrate with atoms
at the lattice edge.

More quantitatively, the results of our calculation of the
phases are shown in Figs. 4–8. In these plots, the horizontal
axis is the lattice depth along a diagonal from the edge of
the trap to the center. The center of the trap can be chosen
to be anywhere along this axis (or beyond). Figure 4 shows
the cases with no compensating beams. The smallness of the
AF region due to the strong variation of the AF phase with
the lattice depth is readily apparent. To make the AF phase
occupy a larger fraction of the trap, the compensating beam
must shift the chemical potential of the AF phase so that it
remains constant with varying lattice depth as shown in the
following figures.

Three different scenarios can be engineered for the filling
of the reservoirs, which we consider for as = 0.1d in the
following plots: RIII nonempty (Fig. 5), RIII empty (Fig. 6), and
RII and RIII empty (Fig. 7). To get a sense of the dependence on

interaction strength, we plot the phases for as = 0.06d when
all three reservoirs are occupied in Fig. 8.

A qualitative understanding of why different waists for the
lattice beams and the compensating beams is advantageous
is illustrated by Fig. 9. Unequal beam waists will cause the
strength of the compensating beams to grow as a power law in
the strength of the lattice beams, as expressed by Eq. (9). For
deep lattices, the bottom of the Mott gap becomes narrowly
separated from the bottom of the lowest Bloch band. The
objective of the compensating beams is to keep the chemical
potential inside the Mott gap as the lattice depth varies. In
the absence of the compensating beams, the dependence of
the bottom of the Mott gap on the lattice depth is reasonably
well described by a power law, so the compensating beams can
flatten the Mott gap, thus achieving our objective. Furthermore,
we expect from the behavior of the band bottoms as a function
of the lattice depth shown in Fig. 9 that we need α > 1 for
attractive lattice beams and α < 1 for repulsive lattice beams
to obtain as flat a Mott gap as possible with the given setup. The
special case where the lowest order confinement is quartic [8]
is achieved by setting V0L/V0C = α2. While this choice of
parameters flattens the bottom of the potential, it does not
maximize the volume of the Néel phase, since that is achieved
by flattening the Mott gap instead, as we propose.

The Hartree approximation we have used in this work is a
mean-field approximation and the real system will be quanti-
tatively somewhat different from these Hartree estimates, due
to nontrivial fluctuations and correlations. However, we do
not require precise numerical results to show the effectiveness
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FIG. 4. (Color online) Phases without compensation and with
as = 0.1d . (a) Attractive lattice beams. (b) Repulsive lattice beams.
The horizontal axis is the local lattice depth V

diag
0L which depends

monotonically on the distance r from the trap center along a
{±1,±1, ±1} direction. The zero of energy for the vertical axis
corresponds to the potential in region RIII, where all the lattice and
compensation lasers are negligible. The red stars denote the bottom
of the band along a diagonal and correspond to the lowest-energy
single-atom Bloch state when the system is empty. The overall
chemical potential μ is denoted by the horizontal black dashed lines.
If μ < 0, RIII is empty; μ below the red stars corresponds to vacuum.
The shaded blue regions correspond to the AF phase. μ outside of
the blue region and above the red stars corresponds to a paramagnetic
Fermi gas in reservoir RI. The green plus signs denote the bottom
of the band in reservoir RII, where only one lattice beam is present.
RII is empty when μ is below these. Since the laser potentials in the
different directions are additive, the band bottom along the x, y, or z

axis in RII (green plus signs) is one-third of the band bottom along
the diagonals (red stars). The chemical potential is chosen so that
the AF phase appears around the optimal lattice depth (V0 = 4ER

for as = 0.1d) calculated in the Hartree approximation [15]. The AF
phase occupies a relatively narrow region of values of lattice depths,
which translates into a narrow region of the trap. As the lattice gets
deeper, the bottom of the band gets pulled down (up) for attractive
(repulsive) lattice beams.

of the presented scheme. The Mott-Hubbard gaps are large
enough in the region of interest that quantitative changes in
the precise values will not destroy the general qualitative
features that this scheme relies upon. The solid (blue) lines
in Figs. 4–8 bound the AF Mott insulating phase. The Hartree
approximation probably overestimates the range of stability of
this phase, since it does not include all quantum fluctuations.
But if the AF phase is quantitatively a little smaller in
these figures than what we show, the chemical potential and
compensating potential can still be adjusted to enlarge the AF

FIG. 5. (Color online) Phases for as = 0.1d with compensating
beams, for (a) attractive lattice beams and (b) repulsive lattice beams,
with μ > 0 chosen to give density nd3 = 0.1 in RIII. The parameters
are (a) β = 0.379 and α = 1.13 and (b) β = 0.705 and α = 0.81.
The lines and symbols are defined as in Fig. 4.

phase to fill the entire central region of the lattice and allow
continued evaporation from the AF phase within the lattice.

FIG. 6. (Color online) Empty RIII reservoir with as = 0.1d .
(a) Attractive lattice with β = 0.315 and α = 1.17. (b) Repulsive
lattice with β = 0.80 and α = 0.77.
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FIG. 7. (Color online) Both RII and RIII are empty, with as =
0.1d . (a) Attractive lattice with β = 0.30 and α = 1.16. In this case,
the AF phase does not go all the way to 2.4ER . (b) Repulsive lattice
with β = 1.0 and α = 0.74. For this setup in both panels (a) and
(b), the evaporating atoms go out the “beams” through the empty
RII’s and not through RIII, which is at too high an energy relative
to μ.

V. MAXIMIZING THE BRAGG SIGNAL

The AF phase can be directly detected using Bragg
scattering of near-resonant light [14]. The Bragg signal from
scattering off the up-spin density, for example, is proportional
to the volume of the AF phase and to the square of the Fourier
transform of the up-spin density at momentum (kR,kR,kR).
We have shown that the volume of the AF phase may be
maximized by varying the relative intensities and waists of
the lattice and the compensating beams. While cooling and
equilibration times are minimized at relatively low lattice
depths, the Bragg signal is enhanced at deeper lattice depths,
for which quantum fluctuations due to the site being doubly
occupied or unoccupied are weaker. Figure 10 shows a plot
of the Fourier intensity in the ground state as a function of
the lattice depth for as = 0.1d and as = 0.06d. The lattice
depths which maximize AF superexchange in the Hartree
approximation [15] are indicated. We see that the Bragg
signal is maximized by going to deeper lattices and stronger
interactions. Therefore, one must compromise between the
conditions that minimize the time scales for equilibration and
cooling and those that maximize the Bragg signal.

One way to strengthen the Bragg signal is to cool and
equilibrate at the relatively low lattice depths that maximize
superexchange, but before performing Bragg scattering ramp
up the lattice depth [17,18] at a speed that is sufficiently
adiabatic to reduce the quantum fluctuations. Since these
fluctuations arise from virtual pairs of empty and doubly
occupied sites due to the superexchange process, one should

FIG. 8. (Color online) Situation similar to Fig. 5, with a
lower scattering length: as = 0.06d . (a) Attractive lattice with
α = 1.13 and β = 0.389. (b) Repulsive lattice with α = 0.79 and
β = 0.72.

be able to remove them provided that the lattice ramp is
adiabatic with respect to the Mott-Hubbard gap. The spin-wave
zero-point fluctuations that are present in the corresponding
Heisenberg model are not strongly reduced in the limit of a
deep lattice, while the virtual vacancies and doubly occupied
sites are strongly suppressed. At nonzero temperature thermal
fluctuations will also produce real empty and doubly occupied
sites. The lattice ramp will bias the hopping of these thermally
excited site defects and possibly produce heating unless the
compensating beams are carefully ramped together with the
lattice to eliminate such forces. The ramp should be fast enough
to shut down the hopping in order to freeze in these thermal
excitations before they can recombine and release their energy,
which becomes increasingly high compared to the energy
of spin fluctuations as the lattice strengthens. This suggests
an optimal ramp rate is the fastest possible while remaining
adiabatic with respect to the Mott-Hubbard gap in the bulk of
the AF phase. The ramp will be nonadiabatic near the outer
edges of the AF phase, where the lattice is weak and the Mott
gap is initially very small, causing some of the Bragg signal
to be lost, but since the Néel ordering was initially very weak
there the gain by enhancing the Bragg signal over the bulk of
the AF phase should outweigh this loss near its edges. The pre-
cise balance between these various nonequilibrium dynamical
considerations is a challenge and deserves further study.

Bragg scattering relies on the antiferromagnetic ordering
being along the spin direction set by the “up” and “down”
hyperfine states, which we call the z direction. The local
up and down spin populations may not be precisely equal,
however, because of fluctuations in the initial conditions. This
local spin polarization along the z direction produces canted
antiferromagnetism [19,20], in which the AF order is tilted
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FIG. 9. (Color online) Bottom of the lowest Bloch band along the
diagonal directions, i.e., for a potential V (x,y,z) = V

diag
0L [sin2(kRx) +

sin2(kRy) + sin2(kRz)] for (a) attractive lattice beams (V diag
0L < 0)

and (b) repulsive lattice beams (V diag
0L > 0). The energy difference

between the bottom of the lowest Bloch band and the bottom of the
Mott gap decays quickly with increasing lattice depth. Therefore, to
keep the chemical potential in the Mott gap one has to flatten the
bottom of the band for deep lattices. (a) Solid red line: Bottom of the
band in the case of attractive lattice beams. The dashed (dot-dashed)
line gives the asymptotic behavior at deep (weak) lattice. For a weak
lattice, first-order perturbation theory finds the bottom of the gap to
be −3V

diag
0L /2. For a deep lattice, using the harmonic and lowest-order

anharmonic terms for the wells in the lattice, one finds that the

band bottom is −3V
diag

0L + 3(
√

V
diag

0L /ER − 1/4)ER . The band bottom
goes down superlinearly in lattice depth, so the compensating beam
intensity must therefore grow superlinearly in V

diag
0L . (b) Solid blue

line: Bottom of the band in the case of repulsive lattice beams. The
dashed (dot-dashed) line gives the asymptotic behavior at deep (weak)
lattice. For a weak lattice, the band bottom is ∼3V

diag
0L /2, while for

a deep lattice, it becomes ∼3(
√

V
diag

0L /ER − 1/4)ER . Therefore, the
band bottom grows sublinearly in lattice depth, so the compensating
beam intensity must grow sublinearly in V

diag
0L .

only slightly away from the xy plane. In this case, a π/2 pulse
before the Bragg measurement will tip the AF order up to
a plane containing the z direction, making it detectable with
Bragg scattering [14].

If the lattice depth is ramped up before Bragg scattering,
the π/2 pulse should be applied before the lattice ramp for the
following reasons: At deep lattices, the spin-spin interaction is
greatly reduced and thus the components of the spins pointing
in the xy plane on different lattice sites may dephase with
respect to one another due to thermal and quantum fluctuations.
However, spins pointing in the z direction will not dephase
since they are eigenstates of the single-atom Hamiltonian in
a single deep well. Therefore, a π/2 pulse before ramping
the lattice depths will partially prevent dephasing of the AF
correlations that can occur at large V0L, by increasing the
amount of the AF order that is along the z direction.

FIG. 10. (Color online) Square of the Fourier transform at
momentum (kR,kR,kR) = (π/d,π/d,π/d) of the up-spin density,
where d is the lattice spacing and ν is the volume of the system,
for two interaction strengths: as = 0.1d (blue) and as = 0.06d (red).
The Bragg signal obtained from scattering light off the up spins
will be proportional to this quantity. At infinite lattice depth, it
becomes 1/4, as the Fourier transform of infinitely localized particles
on the face-centered cubic (FCC) lattice at this momentum is 1/2.
The highlighted (orange) points are at the corresponding lattice
depth where the AF superexchange is maximized. While a deeper
lattice and stronger interactions lead to more localized particles,
and therefore a stronger Bragg signal, deeper lattices also lead to
smaller superexchange and therefore smaller ordering temperatures
and longer time scales for heat transport. Both objectives can be met
by cooling with a weaker lattice and then ramping up the lattice before
performing Bragg scattering.

VI. CONCLUSIONS

We have proposed a setup to facilitate both realizing and
detecting the Néel state of two-component fermions in a
simple-cubic optical lattice. We found that the introduction
of compensating beams with a different beam waist allows for
a significant growth of the Néel phase in the trap and control
over the different reservoirs that this state is in contact with.
The ability to grow the size of the Néel phase in this simple
setup relies on the observation that the chemical potential of
the Néel phase has a dependence on the lattice depth which is
well approximated by a power law. Since this is likely to be the
case for other phases of cold atoms in optical lattices we expect
that the proposed setup will confer similar advantages to other
attempts at realizing and probing such phases. One of the main
challenges is realizing a setup where the system is able to shed
its entropy, even as a gapped phase is forming and inhibiting
transport. Typically, present experiments rely on precooling
the atoms and then adiabatically loading them into the lattice
and forming the phase of interest. Our proposed approach is
to instead continue evaporative cooling as the lattice is turned
on, by maintaining the chemical potential at a level that allows
the phase to stay in contact with a reservoir of mobile atoms
that is evaporatively cooled.
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[18] A.-M. Daré, L. Raymond, G. Albinet, and A.-M. S. Tremblay,

Phys. Rev. B 76, 064402 (2007).
[19] B. Wunsch, L. Fritz, N. T. Zinner, E. Manousakis, and E. Demler,

Phys. Rev. A 81, 013616 (2010).
[20] M. Snoek, I. Titvinidze, and W. Hofstetter, Phys. Rev. B 83,

054419 (2011).

023606-8

http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1038/nature07244
http://dx.doi.org/10.1126/science.1165449
http://dx.doi.org/10.1126/science.1165449
http://dx.doi.org/10.1103/PhysRevLett.104.066406
http://dx.doi.org/10.1103/PhysRevLett.104.066406
http://dx.doi.org/10.1103/PhysRevLett.104.180401
http://dx.doi.org/10.1103/PhysRevLett.106.030401
http://dx.doi.org/10.1103/PhysRevA.83.023606
http://dx.doi.org/10.1103/PhysRevA.78.023605
http://dx.doi.org/10.1103/PhysRevA.79.061601
http://arXiv.org/abs/arXiv:0911.5506
http://dx.doi.org/10.1103/PhysRevB.85.075418
http://dx.doi.org/10.1103/PhysRevLett.104.160403
http://dx.doi.org/10.1103/PhysRevLett.104.160403
http://dx.doi.org/10.1103/PhysRevA.80.063605
http://dx.doi.org/10.1103/PhysRevA.80.063605
http://dx.doi.org/10.1103/PhysRevA.81.013415
http://dx.doi.org/10.1103/PhysRevA.79.063412
http://dx.doi.org/10.1103/PhysRevA.79.063412
http://dx.doi.org/10.1103/PhysRevLett.95.056401
http://dx.doi.org/10.1103/PhysRevLett.95.056401
http://dx.doi.org/10.1103/PhysRevA.77.023623
http://dx.doi.org/10.1103/PhysRevA.77.023623
http://dx.doi.org/10.1103/PhysRevB.76.064402
http://dx.doi.org/10.1103/PhysRevA.81.013616
http://dx.doi.org/10.1103/PhysRevB.83.054419
http://dx.doi.org/10.1103/PhysRevB.83.054419



