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EXPERIMENTAL DETAILS

A pair of coils in Helmholtz configuration is used to produce a homogeneous magnetic

field, B, which allows us to vary the interatomic interactions. For a given value of B the

corresponding scattering length is determined from:

a = abg

(
1 +

∆

B −B∞

)
, (1)

where abg = −24.5 a0, B∞ = 736.8 G, ∆ = 192.3 G [30] and a0 the Bohr radius. An

oscillation of the bias field, B(t) = B̄ + ∆Bsin(ωt), where B̄ is the mean and ∆B is the

modulation amplitude. This produces an asymmetric a(t) since a is a non-linear function.

Thus, the mean is ā, the maximum is a+, and minimum is a−.

NUMERICAL METHOD: MCTDHB

The Hamiltonian describing the problem is:

H(t) = T + V +W(t), (2)

with T = − ~2
2m

∑N
i ∇2

ri
, V =

∑N
i Vtrap(ri) and W =

∑
i<j W (ri − rj; t) being the many-

body kinetic, potential, and interaction energy operators, respectively. We have:

Vtrap(r) =
ω2
z

2
z2 +

ω2
r

2
r2 and (3)

W (ri − rj; t) = g(t)δ(|ri − rj|) = g0

[
−β1 +

β1

β2 − β3 sin(ωt)

]
δ(|ri − rj|), (4)
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where g(t) and g0 are dimensionless parameters quantifying the time-dependent and

time-independent interaction strengths, respectively, whose values are given below, β1 =

−β2/(β2− 1) = |abg/ā| = 24.5/7.9, β2 = |(B̄−B∞)/∆|, β3 = |∆B/∆|, and r = (x, y, z)T .

The time-dependent interparticle interaction models the experimental modulation of the

scattering length. In the granulation experiment ωr/ωz ≈ 32 and so the trap has a cigar

shape, close to the 1D regime [35].

To solve the time-dependent Schrödinger equation for many interacting particles,

i~
∂Ψ

∂t
= H(t)Ψ, (5)

we apply the Multiconfigurational Time-Dependent Hartree theory for Bosons (MCT-

DHB) [28, 29] and use the MCTDH-X numerical solver [41–43] for 1D and 3D simulations.

The MCTDHB theory assumes a general ansatz Ψ = Ψ(R, t) for the N−particle problem

and expands it on a many-body basis Ψ(R, t) =
∑

k Ck(t)Φk(R, t), where Φk are all possi-

ble permanents (i.e. boson-symmetrized many-particle wavefunctions) built over a finite

set of M orbitals (i.e. single-particle orthonormal states) φj(r) and R = {r1, r2, . . . , rN}.

The theory goes beyond the standard mean-field approximation and incorporates frag-

mentation and correlation functions of any order p, 1 ≤ p ≤ N [39]. Note that the M

orbitals are found self-consistently and are not a priori chosen. Therefore, MCTDHB

chooses the best set of orbitals at each time. We performed three sets of simulations with

the following parameters:

1. A one-dimensional system, with (dimensionless) trap frequency ωcom = 0.1, N =

104, M = 1 and M = 2 and g(1D) = g0(N − 1) = 357. The interaction parameter is

found from g(1D) = 2aNexp
√
ωcomlz/l

2
r , where a is the experimental background value

of the scattering length and lr,z =
√

~/(mωr,z). The experimental trap frequencies

ωr = (2π)254 Hz, ωz = (2π)8 Hz have been used and ā = 7.9a0, Nexp = 5.7 × 105

particles (see Eq. 4). The simulations and quantities derived from this dataset are

presented in Figs. 7–10. The computation was performed on a 1D spatial grid of 4096

points. The modulating frequencies take on the values ω/(2π) = 10, 20, 30, . . . , 90
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Hz. Due to the fast temporal modulation of the atom-atom interaction operator

and the resulting strong local density modulations, the computations are numeri-

cally highly demanding. Therefore, extended convergence checks are required. We

have confirmed convergence with respect to both the spatial grid density and the in-

tegration time step as well as error tolerance for frequencies up to ω/ωz = 10. Even

though the error tolerance demanded is 10−11−10−10 (extremely high accuracy) the

accumulated error in the total energy at the end of the propagation remains between

3 − 8% and is somewhat larger for the natural occupations. This reflects the fact

that the Fock space (spanned by M = 2 basis functions) is far from complete [44].

At ω/2π = 30 Hz we have seen resonant behavior: the energy increases up to

≈ 10 times after 500 ms and the density is found to occupy all available space.

Convergence checks are beyond the computational capacities and the point at

ω/2π = 30 Hz has not been included in the plots. We attribute the resonant

behavior at ω/2π = 30 Hz to its proximity to 2ωQ, where ωQ =
√

3ωz is the 1D

quadrupolar frequency. We have also performed calculations for ωQ = 13.9 Hz and

2ωQ = 27.9 Hz, and have observed similar behavior.

2. A three-dimensional system with ωz = 1, ωy = ωx = 32, N = 1000, M = 1 and

g(3D) = 4πNexpa/lz = 222, using also a delta-type interaction pseudopotential. The

computational grid was 512 × 64 × 64 wide. All other parameters are set as in

paragraph 1. The modulation frequency was set to ω = 8.75ωz, that corresponds

to the experimental value ω/2π = 70Hz. The amplitude of modulation of the

interaction is, as before, always positive (results plotted in Fig. 6).

All our simulations use a discrete variable representation. The orbital part of the MCT-

DHB equations of motion are solved using Runge-Kutta or Adams-Bashforth-Moulton of

fixed order (between 5 and 8) and variable stepsize as well as the Bulirsch-Stoer scheme of

variable order and stepsize. Davidson diagonalization and short iterative Lanczos schemes

were used to evaluate the coefficient part of the MCTDHB equations. The stationary ini-

tial state Ψ0 is found by imaginary time propagation with time-independent interactions,
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g(t) = g0. Subsequently, Ψ0 is propagated in real time for the above time-dependent

Hamiltonian and sets of parameter values. For the parameters chosen in the 3D sim-

ulation the time unit is τ = 19.9ms and the length unit is L = 13.5µm. For the 1D

simulations we have τ = 2ms and L = 4.3µm. Energy is measured in units of ~2/(mL2).

CORRELATION FUNCTIONS, SINGLE SHOT SIMULATIONS, AND CON-

TRAST

The density matrix ρ(N) = |Ψ〉〈Ψ| describes the N -body quantum system in state Ψ

and the reduced density matrix (RDM) of order p = 1, 2 . . . (partial trace of ρ(N)) is most

commonly employed and gives the p-particle probability densities. The eigenbasis of the

RDMs gives information on the pth-order coherence of the system. In particular, if there

is more than one macroscopic eigenvalues of the first (second) order RDM then the system

is fragmented and first (second) order coherence is lost.

Specifically, the pth-order reduced density matrix (RDM) is defined as [45]:

ρ(p)(z1, . . . , zp|z′1, . . . , z′p; t)

= N !
(N−p)!

∫
Ψ(z1, . . . , zp, zp+1, . . . , zN ; t) (6)

×Ψ∗(z′1, . . . , z
′
p, zp+1, . . . , zN ; t)dzp+1 . . . dzN

=
∑

k n
(p)
k (t)φ

(p)
k (z1, . . . , zp; t)φ

(p)∗
k (z′1, . . . , z

′
p; t), (7)

where n
(p)
k (t) are its eigenvalues and φ

(p)
k (t) its eigenfunctions. For p = 1, n

(1)
k (t) ≡

nk(t) are the so-called natural occupations of the corresponding natural orbitals φ
(1)
k (z; t).

According to the Onsager-Penrose definition [46], a system of N interacting bosons is said

to be condensed if and only if one natural orbital φ
(1)
m is macroscopically occupied, or,

nm/N ∼ 1 for some m, while nj/N ∼ 0 for j 6= m. If more than one natural orbital is

macroscopically occupied then the system is called fragmented [47]. The diagonal

ρ(z; t) ≡ ρ(1)(z|z; t) =
M∑
k=1

nk(t)|φ(1)
k (z; t)|2 (8)
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we simply call density. The eigenfunctions φ
(2)
k (z1, z2) of the 2nd order RDM are known as

natural geminals (NG). Their occupations satisfy
∑

j=1 n
(2)
j = N(N − 1) and are plotted

in Fig. 9(c) (normalized to 1).

The pth order correlation function is:

g(p)(z1, . . . , zp|z′1, . . . , z′p; t) =
ρ(p)(z1, . . . , zp|z′1, . . . , z′p; t)√∏p

i=1 ρ
(1)(zi, zi; t)ρ(1)(z′i, z

′
i; t)

. (9)

The skew diagonal (antidiagonal)

gskew(z, t) = g(1)(z,−z; t). (10)

gives the degree of correlation of the density at a point z with its antipodal at point

[48] z′ ≡ −z (see Fig. 9). Similarly, the normalized pth order correlation function in

momentum space can be defined, via the Fourier transform ρ̃(p)(k1, . . . , kp|k′1, . . . , k′p; t) of

ρ(p)(z1, . . . , zp|z′1, . . . , z′p; t). Note that |g(1)|, the spatial correlation function, is bounded

like 0 ≤ |g(1)| ≤ 1 for any two points (z, z′). For Bose condensed and hence non-fragmented

states, |g(1)| takes its maximal value everywhere in space and the state is first-order

coherent. Moreover, if |g(2)| < 1 we term the state anticorrelated while for |g(2)| > 1 we

term it correlated.

The 2nd order correlation function of Fig. 8(a) and Fig. 8(c) for some observed distri-

butions n(z) is given by:

C(2)(z, z′) =
〈n(z)n(z′)〉
〈n(z)〉 〈n(z′)〉

. (11)

We emphasize that in the expression for C(2), the notation 〈·〉 corresponds to an average

across experimental realizations.

The single-shot simulations plotted in Fig. 7(b) and Fig. S1 have been obtained with

the method to obtain random deviates of the N -particle probability density |Ψ|2 that is

prescribed in Refs. [39, 40]. In brief, the procedure relies on sampling the many-body

probability density |Ψ|2 as follows: one calculates the density ρ0(z), from the obtained

solution |Ψ(0)〉 ≡ Ψ of the MCTDHB equations. A random position z′1 is drawn from

ρ0(z). In continuation, one particle is annihilated at z′1, the reduced density ρ1 of the
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reduced system |Ψ(1)〉 is calculated and a new random position z′2 is drawn. The procedure

continues for N − 1 steps and the resulting distribution of positions (z′1, z
′
2, . . . , z

′
N) is a

simulation of an experimental single-shot image.

The contrast parameter D quantifies the deviation of some spatial distribution n(z) =

n(z; t0) of a single shot at a given time t0 from the parabolic (Thomas-Fermi-like) best fit

nbf(z) = nbf(z; t0) at the same time and is defined as:

D =

∫
dz
|n(z)− nbf(z)|

nbf(z)
or (12)

D =

ngp∑
i

|n(i)− nbf(i)|
nbf(i)

, iff |n(i)− nbf(i)| ≥ Ccutoff , (13)

where i runs over all ngp pixels/grid points. The cutoff requirement Ccutoff = 0.20 nbf(0)

is set so that small (zero-excitation) fluctuations are wiped out and only values with

large deviations are considered (see Fig. S1). Therefore, the resulting contrast parameter

reflects only the large deviations of a given density from its parabolic best fit. To determine

the best fits we used the gnuplot software to fit the polynomial p(z) = −a(z − b)2 + c,

where a, b, c ∈ R, to the obtained experimental or numerical distributions n(z) along z.

The two-dimensional experimental column densities have been integrated along y. The

experimental data were also interpolated to a number of points along z so as to equal the

grid used for the numerical simulations. An example of a processed image is shown in

Fig. S1.
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FIG. S1. Example of data fitting. (upper) Experimental and (lower) numerical data are fitted to

a parabolic curve (yellow) in order to estimate D (see Methods). Only values of D that deviate

more than 20% from the value of the fitting function (i.e. points that lie outside the shaded

area) are taken into consideration. The images are taken at ∆t = tmod + thold = 250 + 250ms.

The numerical simulation is a 1D model with N = 104 and M = 2 and the grid extension is

[-128:128].
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FIG. S2. Density in momentum space. k-space densities for the regular (upper) and the granu-

lated gas (lower panel) as calculated from the MB theory at different times (during modulation

for t ≤ 250ms and after for t > 250ms). In the granulated case the momentum distribution scales

like k−2 (straight line to guide the eye) for almost two decades, behavior that is characteristic

of quantum turbulence. Contrary to the regular gas, this scaling remains even 250ms after the

modulation.
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FIG. S3. Experimental column densities exponentially fitted. Close to the threshold frequency

ω/2π = 40Hz, where the system transitions from regular to granulated states, anomalous spatial

distributions are seen (here, two experimental shots for the same initial conditions). These might

bear resemblance to localized states, that have been shown to exist in BECs in optical lattices

[49]. We fit our observed density distributions to C+A exp
(
− |x−x0|α

d

)
and obtain α = 1.25 and

1.75 for the two shots. The transition from a regular to a localized states happens as α → 1.

For comparison, we plot the parabolic Thomas-Fermi (TF) fit (blue).
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