Collisional loss of one-dimensional fermions near a p-wave Feshbach resonance

Ya-Ting Chang, ${ }^{1}$ Ruwan Senaratne, ${ }^{1}$ Danyel Cavazos-Cavazos, ${ }^{1}$ and Randall G. Hulet ${ }^{1, *}$
${ }^{1}$ Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA

(Dated: September 23, 2020)

Abstract

We study collisional loss of a quasi-one-dimensional (1D) spin-polarized Fermi gas near a p-wave Feshbach resonance in ultracold ${ }^{6} \mathrm{Li}$ atoms. We measure the location of the p-wave resonance in quasi-1D and observe a confinement-induced shift and broadening. We find that the three-body loss coefficient L_{3} as a function of the quasi-1D confinement has little dependence on confinement strength. We also analyze the atom loss with a two-step cascade three-body loss model in which weakly bound dimers are formed prior to their loss arising from atom-dimer collisions. Our data are consistent with this model. We also find a possible suppression in the rate of dimer relaxation with strong quasi-1D confinement. We discuss the implications of these measurements for observing p-wave pairing in quasi-1D.

The realization of ultracold atomic Fermi gases has provided experimental access to a wide array of phenomena, largely because of the presence of Feshbach resonances (FRs) that provide for externally tunable interactions [14]. In addition to the usual s-wave interactions between distinguishable fermions, higher partial-wave interactions may be tuned via FRs [5]. p-Wave interactions are of particular interest as they are the dominant low-energy scattering process between identical fermions and are predicted to exhibit phenomena distinct from those observed in s-wave interacting Fermi gases [6]. In particular, pairing between identical fermions is an essential ingredient of the Kitaev chain Hamiltonian [7], which supports Majorana zero-modes at the ends of the chain. These zeromodes have been observed in semiconducting nanowires [8], and are a promising candidate platform for faulttolerant quantum computing $[9,10]$.
p-Wave FRs have been observed in ${ }^{40} \mathrm{~K}[11-13]$ and ${ }^{6} \mathrm{Li}$ [14-19]. The severe atom losses associated with these resonances, however, have limited their usefulness. Threebody losses, which are suppressed by symmetry in the case of a fermionic two-spin system with s-wave interactions [20], are not suppressed for p-wave interactions. Much work has been done in characterizing the atom loss associated with p-wave FRs [21-24], and there is renewed interest in studying these resonances in reduced dimensions. Recent theoretical work has suggested that threebody losses may be suppressed in quasi-1D [25]. The absence of a centrifugal barrier in 1D results in Feshbach dimers that have extended wavefunctions which overlap less with deeply-bound molecules. If three-body loss is suppressed by this mechanism, it might open a path towards realizing p-wave pairing in quasi-1D and emulating the Kitaev chain Hamiltonian.

We present an experimental study of three-body losses
near a p-wave FR of identical ${ }^{6} \mathrm{Li}$ fermions in quasi-1D. We measure the three-body loss coefficient $\left(L_{3}\right)$ as a function of 1 D confinement for a direct three-body process. We also analyze the observed atom loss within the framework of a cascade model with explicit dimer formation and relaxation steps [26, 27], using in situ imaging to reduce the effect of the inhomogeneous density. Finally, we characterize the confinement-induced shifts in the resonance position that appear in quasi-1D [28-32]. These shifts allow us to extract a value for the effective range.

The apparatus and the experimental methods we use to prepare degenerate Fermi gases have been described previously [33-35]. A ${ }^{6} \mathrm{Li}$ degenerate Fermi gas is first prepared in the two lowest hyperfine states of the $S_{1 / 2}$ manifold (states $|1\rangle$ and $|2\rangle$, respectively) at 595 G , and then loaded into a crossed-beam dipole trap formed by three linearly-polarized mutually-orthogonal laser beams of wavelength $\lambda=1.064 \mu \mathrm{~m}$. Each beam is retroreflected, with the polarizations of the incoming and retro-reflected beams initially set to be perpendicular to each other to avoid lattice formation. We eliminate state $|1\rangle$ from the trap with a resonant burst of light. At this stage, we obtain $9(1) \times 10^{4}$ atoms in state $|2\rangle$ in a nearly isotropic harmonic trap with a geometric-mean trapping frequency of $2 \pi \times 305(2) \mathrm{Hz}$, and at a temperature $T / T_{F} \approx$ 0.1 where, T_{F} is the Fermi temperature. The optical trap depths are increased and the polarizations of the retroreflected beams are rotated to achieve a $7 E_{r}$ deep 3D optical lattice, where $E_{r}=h^{2} /\left(2 m \lambda^{2}\right)=k_{\mathrm{B}} \times 1.41 \mu \mathrm{~K}$ is the recoil energy, and m is the atomic mass. During the lattice ramp-up, a co-propagating beam of 532 nm light is introduced along each trapping-beam dimension to flatten the trapping potential [33, 34]. By tuning these compensation beam powers, we create a 3D band insulator with a central density of approximately 1 atom
per site. In order to produce a 2D lattice, which is an array of quasi-1D tubes, we slowly turn off the compensation beams and the vertical lattice beam, while increasing the intensity of the two remaining beams to achieve a desired 2D lattice depth, V_{L}. This depth determines the confinement in the quasi-1D traps, which is parameterized by $a_{\perp}=\sqrt{2 \hbar / m \omega_{r}}$ transversely and R_{F} axially, where $\omega_{r}=\sqrt{4 E_{r} V_{L}} / \hbar$ is the trapping frequency of a lattice site when approximated as a harmonic potential, and $R_{F}\left(N_{t, j}, \omega_{z}\right)=\sqrt{\left(2 N_{t, j}+1\right) \hbar / m \omega_{z}}$ is the Fermi radius of tube j with number of atoms $N_{t, j}$ and an axial frequency ω_{z}. The aspect ratio of the quasi-1D tubes, $\omega_{r} / \omega_{z} \approx 170$. We load a maximum of around 30 atoms per quasi-1D tube with $T<T_{F}$ to avoid exciting any radial modes.

We use a two-step servo scheme to stabilize the current in the coils producing the Feshbach magnetic field, because the ${ }^{6} \mathrm{Li}|1\rangle-|1\rangle p$-wave FR near 159 G is very narrow. The first servo, S_{1}, provides the large dynamic range required to run our experimental sequence, while the second servo, S_{2}, controls the current in a bypass circuit added in parallel to the magnetic coils. This improves the stability of the magnetic field to $\pm 10 \mathrm{mG}$ and provides finer magnetic-field resolution. After reaching the hold field B, the atoms are transferred into $|1\rangle$ with a π-pulse of duration 75μ s using RF radiation resonant with the $|1\rangle-|2\rangle$ transition. After a hold time τ, we ramp the field back to 595 G , where the distribution of the remaining atoms is imaged using in situ phase-contrast imaging with a probe beam propagating perpendicular to the tube axis [35]. By using the inverse Abel transform, which exploits the approximate cylindrical symmetry of the 2D lattice, we measure the distribution with a spatial resolution of approximately three lattice constants. We sector the 2D lattice into concentric shells in which the tubes have similar chemical potentials, μ. This procedure is useful as scattering processes are in general energy-dependent, so observables depend on rate coefficients that are averaged over the Fermi-Dirac distribution for atoms in each tube.

We characterize the $|1\rangle-|1\rangle p$-wave FR in 3 D and quasi1 D by measuring atom loss as functions of B and τ. In 3D, we find the onset of loss at $159.05(1) \mathrm{G}$, which agrees with previous measurements of the location of this resonance in $3 \mathrm{D}[15,17]$ but differs with other measurements [19, 36] by a few 10's of mG. We are not able to resolve the expected doublet feature arising from the dipole-dipole interaction $[12,19,37]$ because of limitations of the field stability. All the 1D data in this paper were measured with the magnetic field aligned with the z-axis, and thus only involve collisions with the $m_{l}=0$ projection of the angular momentum. As V_{L} is increased, we observe a confinement-

FIG. 1. (a) p-Wave resonances in 3D and quasi-1D measured with magnetic-field-dependent loss. Dashed lines show the resonance position for each V_{L}. We define the resonance field for zero-momentum collisions, which corresponds to the onset (15% loss, to overcome atom number fluctuation) of the observed atomic loss. Data are averaged over 6 experimental runs and error bars are the standard error of the mean. (b) Diamonds show $B_{1 D}$ vs V_{L}. The solid curve shows the result of fitting the data to Eq. 3, where the effective range $\alpha_{p}=$ $0.14(1) a_{0}^{-1}$ and $B_{3 D}=159.07(1) \mathrm{G}$ are fitted parameters. Error bars are the statistical uncertainty arising from atom number fluctuation and field instability. In both (a) and (b), τ is chosen such that peak loss is $30-50 \%$ of total atom number for each value of $V_{L}: 2.5 \mathrm{~ms}$ for $3 \mathrm{D}, 0.5 \mathrm{~ms}$ for $7 E_{r}$ and 0.2 ms for 15-75 E_{r}.
induced shift in the resonance field and broadening of the atom-loss feature, as shown in Fig. 1(a).

We review p-wave scattering in 3D and quasi-1D to show how the measured confinement-induced shift can be used to extract α_{p}, the 3D effective range. For low-energy collisions in 3D, the cotangent of the phase-shift δ_{p} associated with p-wave scattering can be expanded as a function of scattering volume, V_{p}, and effective range, α_{p} [38]:

$$
\begin{equation*}
k^{3} \cot \left(\delta_{p}(k)\right)=-\frac{1}{V_{p}}-\alpha_{p} k^{2}+O\left(k^{4}\right) \tag{1}
\end{equation*}
$$

where $\alpha_{p}>0$ and has units of inverse length. These
scattering properties are modified in quasi-1D,

$$
\begin{equation*}
k \cot \left(\delta_{p}(k)\right)=-\frac{1}{l_{p}}-\xi_{p} k^{2}+O\left(k^{4}\right) \tag{2}
\end{equation*}
$$

where l_{p} is the 1 D scattering length and ξ_{p} is the 1D effective range, which has units of length. These quasi-1D scattering parameters are given by $l_{p}=$ $3 a_{\perp}\left[a_{\perp}^{3} / 2 V_{p}+\alpha_{p} a_{\perp}+6|\zeta(-1 / 2)|\right]^{-1}$ and $\xi_{p}=\alpha_{p} a_{\perp}^{2} / 6$ [30-32], where ζ is the Riemann zeta function $(\zeta(-1 / 2) \approx$ $-0.208)$. The second and third terms in $1 / l_{p}$ lead to a confinement-induced shift in the resonance location. In this formalism, only dynamics along the axial dimension are relevant, and scattering quantities, such as the elastic scattering cross-section, are expressed in units appropriate for 1D.

By performing a coupled-channel calculation, which requires detailed knowledge of the inter-atomic potentials [39], we obtain an expansion $1 / V_{p}(B)$ up to second order in B. The effective range α_{p} can be approximated as a constant independent of B for the relevant range of magnetic field. The FR in 3D occurs at the magnetic field $B_{3 \mathrm{D}}$ at which V_{p} diverges. Similarly, in quasi-1D, the resonance occurs when l_{p} diverges at a magnetic field $B_{1 \mathrm{D}}$, which is a function of V_{L} and α_{p}. The confinementinduced shift, $\delta_{B}\left(V_{L}, \alpha_{p}\right)=B_{1 D}-B_{3 D}$, can be approximated to leading order in confinement strength V_{L} by [40]

$$
\begin{equation*}
\delta_{B}=\frac{-2 m E_{r}}{\left.\hbar^{2} \frac{\partial\left(1 / V_{p}\right)}{\partial B}\right|_{B=B_{3 D}}} \alpha_{p} \sqrt{V_{L}} . \tag{3}
\end{equation*}
$$

We cannot accurately measure $B_{3 D}$ for $m_{l}=0$ alone due to the unresolved $\left|m_{l}\right|=1$ collisions in 3D, so we fit the measured δ_{B} as a function of V_{L} to Eq. 3 by taking α_{p} and $B_{3 D}$ as fitting parameters. The result of the fit to the quasi-1D data is shown by the solid curve in Fig. 1(b). We obtain $\alpha_{p}=0.14(1) a_{0}^{-1}$ which is consistent with our coupled-channel result of $0.1412 a_{0}^{-1}$, where a_{0} is the Bohr radius, and $B_{3 D}=159.07(1)$ which is consistent with our loss-onset measurement and a dipolar splitting of 10 mG in 3D [19]. We also find a consistent value by analyzing previous measurements performed on a 2 D gas of ${ }^{6} \mathrm{Li}$ in state $|1\rangle[21,40]$.

The observed atom loss is presumably due to the formation of deeply-bound molecules. To characterize the loss, we measured N, the number of atoms remaining in the trap after a hold time τ for various B and V_{L}. Background-gas collisions lead to a $1 / e$ atom lifetime of 38 s in this apparatus, and are negligible for this analysis.

Atom loss due to three-body collisions is described by

$$
\begin{equation*}
\frac{\dot{N}}{N}=-L_{3} n^{2} \tag{4}
\end{equation*}
$$

where $n^{2}=\left(N_{t, c} / 2 R_{F, c}\right)^{2}$ is the squared atomic line density for a central tube, determined using a length-scale of twice the local Fermi radius $R_{F, c}$. We measure the time evolution with V_{L} between 15 and $75 E_{r}$ and extract L_{3} by fitting loss vs τ to Eq. 4. Fig. 2(a) shows such a fit to typical loss data. Since L_{3} also depends on ΔB, the field detuning from resonance, we extract L_{3} from the time evolution at several ΔB to find the peak value for each V_{L}. The peak L_{3} for all V_{L} are found to be approxi-

FIG. 2. Typical time evolution of (a) total number in the entire sample and (b) averaged tube population $\left\langle N_{t}\right\rangle$ in 4 shells. For these data, $\Delta B=30 \mathrm{mG}$ and $V_{L}=75 E_{r}$. The different colors and symbols in (b) indicate different shells with approximately uniform initial atom number per tube. The shells are labeled from $i=1$, the inner-most, to $i=4$, the outer-most. Solid curves show fits to Eq. 4 to extract L_{3} with the squared atomic density (a) $n^{2}=\left(N_{t, c} / 2 R_{F, c}\right)^{2}$ of a central tube and (b) $n^{2}=\left(\left\langle N_{t}\right\rangle_{i} / 2 R_{F, i}\right)^{2}$ of a typical tube in each shell. The corresponding L_{3} values are plotted in Fig. 3. Data points are averaged over 5 shots, and the standard error of the mean is (a) approximately equal to the symbol size and (b) indicated by the error bars.
mately $7(2) \times 10^{-6} \mathrm{~cm}^{2} / \mathrm{s}$. We observe no dependence on 1 D confinement in this range [40]. Due to the inhomogeneity of the initial distribution of atoms across the 2D lattice, however, we find a rather poor agreement of the data to Eq. 4.

The results of a more comprehensive analysis of the same data that provides an improved fit to Eq. 4 is shown in Fig. 2(b). Here, we group the tubes into separate cylindrical shells (labeled by $i=1-4$) with an averaged atom number per tube $\left\langle N_{t}\right\rangle_{i}[40]$ and a corresponding Fermi temperature $T_{F, i}$. Figure $3(\mathrm{a})$ shows L_{3} for each shell extracted from data with $V_{L}=75 E_{r}$ vs ΔB. The peak L_{3} for each shell is in the range of $5 \times 10^{-6} \mathrm{~cm}^{2} / \mathrm{s}$ to $1 \times 10^{-5} \mathrm{~cm}^{2} / \mathrm{s}$, and is similar to the peak L_{3} extracted from the whole atomic cloud.

In [25], Zhou and Cui suggest that the rate of threebody loss near a p-wave FR can be suppressed by reducing the overlap between the wavefunctions of a deeplybound molecule and a Feshbach dimer with increasing confinement. To investigate this hypothesis, we analyze our observed loss data using a cascade model of two consecutive two-body processes instead of a direct three-body event: two atoms resonantly form a dimer, followed by a collision between the dimer and an atom, resulting in a deeply-bound molecule and an atom [26]. This approach has previously been applied to the particular p-wave FR we study, but in 3D and quasi-2D [27]. It is the natural formalism in which to evaluate the predicted suppression, as it models the formation and relaxation of dimers. The equations governing this loss process are

$$
\begin{align*}
\frac{d N_{a}}{d t} & =2 \frac{\Gamma}{\hbar} N_{d}-2 K_{a a} \frac{N_{a}\left(N_{a}-1\right)}{4 R_{F}}-K_{a d} \frac{N_{a} N_{d}}{2 R_{F}} \tag{5a}\\
\frac{d N_{d}}{d t} & =-\frac{\Gamma}{\hbar} N_{d}+K_{a a} \frac{N_{a}\left(N_{a}-1\right)}{4 R_{F}}-K_{a d} \frac{N_{a} N_{d}}{2 R_{F}} \tag{5b}
\end{align*}
$$

where N_{a} is the number of atoms, N_{d} is the number of dimers, $K_{a a}$ is the two-body event rate for atom-atom collisions converting atoms into dimers, and $K_{a d}$ is the two-body atom-dimer inelastic collision event rate. Γ, the one-body decay rate of dimers is the width of the FR. The rate of dimer formation is proportional to the number of possible pairs of atoms, given by $N_{a}\left(N_{a}-1\right) / 2$!.
$K_{a d}$ is of particular interest, as it depends on the overlap between dimers and deeply-bound molecules. Both Γ and $K_{a a}$ are related to the elastic scattering cross-section, $\sigma_{1 D}(E)$, which can be calculated, thus constraining the fit to the cascade process to a single parameter, $K_{a d} . \sigma_{1 D}(E)$ may be approximated by a Lorentzian in collision energy,
$E=\hbar^{2} k^{2} / m$, centered at the above-threshold binding energy of the Feshbach dimer $E_{\text {res }}=-\hbar^{2} / l_{p} \xi_{p} m>0$ and with width $\Gamma=\left(\hbar / \xi_{p}\right) \sqrt{4 E_{\text {res }} / m}[6,40]$.
$K_{a a}$ may be calculated by averaging $\sigma_{1 \mathrm{D}}\left(k_{r}\right)$ over the ensemble of pairs of atoms with relative momentum k_{r} and velocity v_{r}

$$
\begin{equation*}
K_{a a}=\left\langle\sigma_{1 \mathrm{D}}\left(k_{r}\right) v_{r}\right\rangle=\hbar \int_{-\infty}^{\infty} d k_{r} \sigma_{1 \mathrm{D}}\left(k_{r}\right) v_{r} P\left(k_{r}\right) \tag{6}
\end{equation*}
$$

where $P\left(k_{r}\right)$ is the probability density function of k_{r} obtained from the density distribution of a trapped Fermi gas [40]. We assume a global temperature T across the entire sample. However, μ varies significantly from tube-to-tube due to the density inhomogeneity across the 2D lattice. This effect is mitigated by sectoring the cloud into shells of similar μ, as discussed earlier, thus giving a distinct value of $K_{a a}$ for each shell. For each quasi-1D tube, μ is determined by $N_{t, j}$ and T.

Although we cannot directly measure T, we exploit the fact that at a sufficiently large ΔB, the rate equations can be approximated as a direct three-body loss process with a loss coefficient $\tilde{L_{3}}=(3 / 2) \hbar K_{a d} K_{a a} / \Gamma$ under the assumptions of a steady-state dimer population $\left(d N_{d} / d t=0\right)$ and $\Gamma / \hbar \gg K_{a d} N_{a} / 2 R_{F}$ [27]. Assuming that these assumptions hold for large ΔB, we fit the measured values of L_{3} for each shell with T and $K_{a d}$ as fitting parameters to L_{3}. We find that $T=0.1 T_{F, 1}$, and that $K_{a d}=0.67$ cm / s is independent of field for $\Delta B>100 \mathrm{mG}$. The assumptions given above are confirmed in this range. The solid lines in Fig. 3(a) show $\tilde{L_{3}}$ for each shell.

The extracted $K_{a d}$ values from fitting loss data for $V_{L}=$ $75 E_{r}$ to Eqs. 5 using the calculated values of Γ and $K_{a a}$ are shown in Fig. 3(b) for the full range of ΔB [40]. We find that under these conditions, Eqs. 5 model the time behavior of the observed loss as well as Eq. 4. The values of $K_{a d}$ extracted for $\Delta B>50 \mathrm{mG}$ are field independent. The observed field independence strongly supports the cascade model as the atom-dimer collision process is inherently non-resonant. In the dimer formation step, the atoms must collide with a momentum dictated by the binding energy of the dimer, which is field-dependent. The dimer relaxation step, however, may proceed for any collision momentum, as the atom receives the binding energy of the deeply bound molecule.

The behavior of $K_{a d}$ for $\Delta B<50 \mathrm{mG}$ is consistent with a suppression of the rate of dimer relaxation. The spatial overlap of the dimer and deeply-bound wavefunctions increases with κa_{\perp}, where $\kappa=\sqrt{m E_{\text {res }}} / \hbar$, so the predicted suppression is strongest for small ΔB, where

FIG. 3. (a) L_{3} vs ΔB for $V_{L}=75 E_{r} . L_{3}$ is obtained by fitting $N_{t, i}$ vs τ to Eq. 4 for each shell. An example of this data is given in Fig. 2(b) for $\Delta B=30 \mathrm{mG}$. Solid curves show $(3 / 2) \hbar K_{a d} K_{a a} / \Gamma$ with a constant $K_{a d}=0.67 \mathrm{~cm} / \mathrm{s}$, calculated for $T=0.1 T_{F, 1}$, where $T_{F, 1}=4.8(2) \mu \mathrm{K}$. (b) $K_{a d}$ vs ΔB. $K_{a d}$ is extracted by fitting $\left\langle N_{t}\right\rangle_{i}$ vs τ to Eq. 5, using the calculated values of Γ and $K_{a a}$. Black dashed line indicates $\Delta B=27 \mathrm{mG}$, which corresponds to $\kappa a_{\perp}=1 / 2$ for $V_{L}=75$ E_{r} [25]. Error bars are one-sigma confidence intervals for the fitting parameters L_{3} and $K_{a d}$. The large uncertainty in the fitted values for the outermost shell is indicative of small N_{t}.
$E_{\text {res }}$ is smallest. The suppression is expected to be significant for $\kappa a_{\perp}<1 / 2$ [25], which for $V_{L}=75 E_{r}$ corresponds to $\Delta B<27 \mathrm{mG}$. Another interpretation of the small-detuning behavior of $K_{a d}$ is that the cascade model breaks down due to, for example, the existence of a shallow three-body bound state [41].

This work is the first detailed experimental study of p wave collisions in quasi-1D. We confirm the confinementinduced shift and broadening as a function of V_{L}. The confinement-induced shift agrees well with quasi-1D theory [32] and the extracted value of α_{p} agrees with previous work [21]. We measure L_{3} as a function of V_{L} and find no dependence up to $75 E_{r}$. The magnetic field independence of $K_{a d}$ for $\Delta B>50 \mathrm{mG}$ confirms the cascade model [26, 27] for three-body loss in quasi-1D in the regime of large $\Delta B(>100 \mathrm{mG})$, as well as for intermediate ΔB
($50-100 \mathrm{mG}$) where the cascade model is not well approximated by the three-body loss rate equation.

The suppression in $K_{a d}$ at $\Delta B<50 \mathrm{mG}$ is possibly explained by p-wave dimer stretching [25]. Achieving greater suppression in ${ }^{6} \mathrm{Li}$ by increasing V_{L} is challenging since at a fixed $\Delta B, \kappa a_{\perp} \propto 1 / V_{L}^{1 / 4}$ [40], but future work at even higher V_{L} or with improved magnetic field resolution and stability would enable further study of this narrow feature. Our result also provides insight into a potential pathway towards observing pairing between identical fermions in cold atom systems. Suppressing loss in heavier fermions with FRs, such as ${ }^{40} \mathrm{~K}[11-13]$, ${ }^{161} \mathrm{Dy}$ [42], and ${ }^{167} \operatorname{Er}$ [43], is promising, as small values of κa_{\perp} may be more readily achieved in these atoms.

Note added. - During the peer-review process, another group reported on a similar experiment [44]. Although both groups observe similar overall atom loss, they report a suppression of $L_{3} \propto V_{L}^{-1}$, while we find L_{3} independent of V_{L} over a wide range (Fig. S2). The difference lies in the choice between defining L_{3} using the 3D or the 1 D densities. In their analysis, L_{3} is defined in terms of the 3 D density of a tube, which increases with $V_{L}^{1 / 2}$, while we use the 1D line density. While the two results are consistent, we argue that 1D densities are most appropriate based on physical and practical considerations. Physically, the dimensionless quantity κa_{\perp} parameterizes the effective dimensionality of the system near a FR, and the peak values of L_{3} we report were measured in regions where $\kappa a_{\perp}<1$. Practically, 1D units make it clear that the peak loss rate is independent of V_{L}.

We would like to thank T. L. Yang for his contributions to the apparatus and W. I. McAlexander for his coupled-channel code. This work was supported in part by the Army Research Office Multidisciplinary University Research Initiative (Grant Nos. W911NF-14-1-0003 and W911NF-17-1- 0323), the NSF (Grant No. PHY1707992), and the Welch Foundation (Grant No. C-1133). D. C. acknowledges financial support from CONACyT (Mexico, Scholarship No. 472271).

* randy@rice.edu

[1] B. DeMarco and D. S. Jin, Science 285, 1703 (1999).
[2] A. G. Truscott, K. E. Strecker, W. I. McAlexander, G. B. Partridge, and R. G. Hulet, Science 291, 2570 (2001).
[3] F. Schreck, L. Khaykovich, K. L. Corwin, G. Ferrari, T. Bourdel, J. Cubizolles, and C. Salomon, Phys. Rev. Lett. 87, 080403 (2001).
[4] S. R. Granade, M. E. Gehm, K. M. O'Hara, and J. E.

Thomas, Phys. Rev. Lett. 88, 120405 (2002).
[5] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010).
[6] V. Gurarie and L. Radzihovsky, Ann. Phys. (NY) 322, 2 (2007).
[7] A. Y. Kitaev, Phys. Usp. 44, 131 (2000).
[8] S. D. Sarma, M. Freedman, and C. Nayak, Quantum Inf. 1, 15001 (2015).
[9] S. B. Bravyi and A. Y. Kitaev, Ann. Phys. (NY) 298, 210 (2002).
[10] A. Stern and N. H. Lindner, Science 339, 1179 (2013).
[11] C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, Phys. Rev. Lett. 90, 053201 (2003).
[12] K. Günter, T. Stöferle, H. Moritz, M. Köhl, and T. Esslinger, Phys. Rev. Lett. 95, 230401 (2005).
[13] C. Luciuk, S. Trotzky, S. Smale, Z. Yu, S. Zhang, and J. H. Thywissen, Nat. Phys. 12, 599 (2016).
[14] J. Zhang, E. G. M. van Kempen, T. Bourdel, L. Khaykovich, J. Cubizolles, F. Chevy, M. Teichmann, L. Tarruell, S. J. J. M. F. Kokkelmans, and C. Salomon, Phys. Rev. A 70, 030702 (2004).
[15] C. H. Schunck, M. W. Zwierlein, C. A. Stan, S. M. F. Raupach, W. Ketterle, A. Simoni, E. Tiesinga, C. J. Williams, and P. S. Julienne, Phys. Rev. A 71, 045601 (2005).
[16] Y. Inada, M. Horikoshi, S. Nakajima, M. KuwataGonokami, M. Ueda, and T. Mukaiyama, Phys. Rev. Lett. 101, 100401 (2008).
[17] J. Fuchs, C. Ticknor, P. Dyke, G. Veeravalli, E. Kuhnle, W. Rowlands, P. Hannaford, and C. J. Vale, Phys. Rev. A 77, 053616 (2008).
[18] R. A. W. Maier, C. Marzok, C. Zimmermann, and P. W. Courteille, Phys. Rev. A 81, 064701 (2010).
[19] M. Gerken, B. Tran, S. Häfner, E. Tiemann, B. Zhu, and M. Weidemüller, Phys. Rev. A 100, 050701 (2019).
[20] D. S. Petrov, C. Salomon, and G. V. Shlyapnikov, Phys. Rev. Lett. 93, 090404 (2004).
[21] M. Waseem, Z. Zhang, J. Yoshida, K. Hattori, T. Saito, and T. Mukaiyama, J. Phys. B 49, 204001 (2016).
[22] M. Waseem, T. Saito, J. Yoshida, and T. Mukaiyama, Phys. Rev. A 96, 062704 (2017).
[23] J. Yoshida, T. Saito, M. Waseem, K. Hattori, and T. Mukaiyama, Phys. Rev. Lett. 120, 133401 (2018).
[24] M. Waseem, J. Yoshida, T. Saito, and T. Mukaiyama, Phys. Rev. A 98, 020702 (2018).
[25] L. Zhou and X. Cui, Phys. Rev. A 96, 30701 (2017).
[26] J. Li, J. Liu, L. Luo, and B. Gao, Phys. Rev. Lett. 120, 193402 (2018).
[27] M. Waseem, J. Yoshida, T. Saito, and T. Mukaiyama, Phys. Rev. A 99, 052704 (2019).
[28] M. Olshanii, Phys. Rev. Lett. 81, 938 (1998).
[29] T. Bergeman, M. G. Moore, and M. Olshanii, Phys. Rev. Lett. 91, 163201 (2003).
[30] B. E. Granger and D. Blume, Phys. Rev. Lett. 92, 133202 (2004).
[31] L. Pricoupenko, Phys. Rev. Lett. 100, 170404 (2008).
[32] D. V. Kurlov and G. V. Shlyapnikov, Phys. Rev. A 95, 032710 (2017).
[33] R. A. Hart, P. M. Duarte, T.-L. Yang, X. Liu, T. Paiva, E. Khatami, R. T. Scalettar, N. Trivedi, D. A. Huse, and R. G. Hulet, Nature 519, 211 (2015).
[34] T. L. Yang, P. Grišins, Y. T. Chang, Z. H. Zhao, C. Y. Shih, T. Giamarchi, and R. G. Hulet, Phys. Rev. Lett. 121, 103001 (2018).
[35] R. G. Hulet, J. H. V. Nguyen, and R. Senaratne, Rev. Sci. Instrum. 91, 011101 (2020).
[36] T. Nakasuji, J. Yoshida, and T. Mukaiyama, Phys. Rev. A 88, 12710 (2013).
[37] C. Ticknor, C. A. Regal, D. S. Jin, and J. L. Bohn, Phys. Rev. A 69, 042712 (2004).
[38] C. J. Joachain, Quantum Collision Theory (NorthHolland, 1975).
[39] M. Houbiers, H. T. C. Stoof, W. I. McAlexander, and R. G. Hulet, Phys. Rev. A 57, R1497 (1998).
[40] See Supplemental Material at [URL] for information regarding the derivation of Eq. 3, the confinement-induced shift in quasi-2D, the dependence of L_{3} vs V_{L}, in situ imaging data, the fitting of time evolution data to the cascade model, the quasi-1D p-wave scattering cross-section, the probability density function of k_{r}, and the dependence of κa_{\perp} on V_{L}.
[41] M. Schmidt, H.-W. Hammer, and L. Platter, Phys. Rev. A 101, 062702 (2020).
[42] K. Baumann, N. Q. Burdick, M. Lu, and B. L. Lev, Phys. Rev. A 89, 020701 (2014).
[43] S. Baier, D. Petter, J. H. Becher, A. Patscheider, G. Natale, L. Chomaz, M. J. Mark, and F. Ferlaino, Phys. Rev. Lett. 121, 093602 (2018).
[44] A. S. Marcum, F. R. Fonta, A. M. Ismail, and K. M. O'Hara, arXiv:2007.15783 [physics.atom-ph] (2020).

Supplementary material for "Collisional loss of one-dimensional fermions near a p-wave Feshbach resonance"

Ya-Ting Chang, Ruwan Senaratne, Danyel Cavazos-Cavazos, and Randall G. Hulet* Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA

(Dated: September 23, 2020)

CONFINEMENT-INDUCED SHIFT δ_{B} IN QUASI-1D

The Feshbach resonance occurs at a magnetic field $B_{1 D}$ where the 1D p-wave scattering length l_{p} diverges $[1-3]$

$$
\begin{equation*}
\frac{1}{l_{p}}=\frac{a_{\perp}^{3} / 2 V_{p}+\alpha_{p} a_{\perp}+6|\zeta(-1 / 2)|}{3 a_{\perp}}=0 . \tag{S1}
\end{equation*}
$$

Since $\alpha_{p} a_{\perp} \gg 6|\zeta(-1 / 2)|$ for the lattice depths V_{L} we can achieve in this experiment, Eq. S1 can be approximated using $1 / V_{p}=-2 \alpha_{p} / a_{\perp}^{2}$. By Taylor expanding this around the 3 D resonance field $B_{3 D}$ to first order

$$
\begin{equation*}
\left.\frac{1}{V_{p}}\right|_{B=B_{1 D}}=\left.\frac{1}{V_{p}}\right|_{B=B_{3 D}}+\left.\frac{\partial\left(1 / V_{p}\right)}{\partial B}\right|_{B=B_{3 D}}\left(B_{1 D}-B_{3 D}\right)=-\frac{2 \alpha_{p}}{a_{\perp}^{2}} \tag{S2}
\end{equation*}
$$

we obtain a simple analytical form for the confinement-induecd shift $\delta_{B}\left(V_{L}, \alpha_{p}\right)=B_{1 D}-B_{3 D}$

$$
\begin{align*}
\delta_{B} & =\frac{-2 \alpha_{p}}{\left.\frac{\partial\left(1 / V_{p}\right)}{\partial B}\right|_{B=B_{3 D}} a_{\perp}^{2}} \\
& =\frac{-2 m E_{r}}{\left.\hbar^{2} \frac{\partial\left(1 / V_{p}\right)}{\partial B}\right|_{B=B_{3 D}}} \alpha_{p} \sqrt{V_{L}} \tag{S3}
\end{align*}
$$

where $\left.\frac{\partial\left(1 / V_{p}\right)}{\partial B}\right|_{B=B_{3 D}}<0$.

CONFINEMENT-INDUCED SHIFT $\delta_{B, 2 D}$ IN QUASI-2D

Similarly to the confinement-induced shift in quasi-1D, an equivalent expression to Eq. S 3 can be derived for this geometry by considering the quasi-2D scattering parameters [3]. The confinement-induced shift in quasi-2D $\delta_{B, 2 D}=B_{2 D}-B_{3 D}$ can be approximated by

$$
\begin{equation*}
\delta_{B, 2 D}=\frac{1}{2} \delta_{B} \tag{S4}
\end{equation*}
$$

The open circles in Fig. S1 show the data of δ_{B} in quasi-2D from [4], and the solid curve shows the result of a fit to Eq. S4 with the effective range $\alpha_{p}=0.158(5) a_{0}^{-1}$ as a fitting parameter. This value of α_{p} is within 15% of the value the authors of [4] obtained by fitting measurements of the dissociation energy, as well as the value extracted from the fit to our quasi-1D data shown in the main text.

[^0]

Figure S1. The open circles show the confinement-induced shift for the quasi-2D p-wave Feshbach resonance position as a function of the corresponding lattice depth (data from [4]). The solid curve shows the result of fit to Eq. S4, with the effective range $\alpha_{p}=0.158(5) a_{0}^{-1}$.

THREE-BODY LOSS COEFFICIENT L_{3} VERSUS V_{L}

We measure the time evolution of atom number N with V_{L} between 15 and $75 E_{r}$ and extract L_{3} by fitting to Eq. 4 in the main text. The peak L_{3} as a function of V_{L} is shown in Fig. S2.

Figure S2. Peak three-body loss coefficient L_{3} as a function of lattice depth $V_{L} . L_{3}$ is extracted by fitting the time evolution of N to Eq. 4 as described in the Fig. 2(a) caption. Error bars indicate the one-sigma confidence interval for the fitting parameters L_{3}.

ANALYSIS USING IN SITU IMAGING WITH INVERSE ABEL TRANSFORM

We probe atoms using in situ imaging and perform the inverse Abel transform on the column density, assuming cylindrical symmetry, to obtain the distribution of the number of atoms per tube $N_{t}(r)$. We group the tubes into separate cylindrical shells as shown in Fig. S3.

Figure S3. Typical time evolution of N_{t} in a tube at a distance r from the center of the 2 D lattice. Regions with colored backgrounds correspond to the shells $i=1-4$ in the main text Fig. 2(b). Data points are averaged over 5 shots, and error bars indicate the standard error of the mean.

TYPICAL TIME EVOLUTION OF $\left\langle N_{t}\right\rangle$ FITS TO THE CASCADE MODEL

We extract $K_{a d}$ from the fits to Eq. 5 in the main text, using theoretical values of $K_{a a}$ and Γ for $T=0.1 T_{F, 1}$. A typical time evolution with the fitted curve is shown in Fig. S4.

QUASI-1D p-WAVE SCATTERING CROSS-SECTION

The quasi-1D p-wave scattering amplitude is [3]

$$
\begin{equation*}
f_{1 \mathrm{D}}(k)=\frac{-i k}{1 / l_{p}+\xi_{p} k^{2}+i k} \tag{S5}
\end{equation*}
$$

In 1 D , the equivalent of the scattering cross-section is simply the modulus of the scattering amplitude squared

$$
\begin{equation*}
\sigma_{1 \mathrm{D}}(k)=\left|f_{1 D}(k)\right|^{2}=\frac{k^{2}}{k^{2}+\left(1 / l_{p}+\xi_{p} k^{2}\right)^{2}} \tag{S6}
\end{equation*}
$$

which is bounded from above by 1. Near a Feshbach resonance for $l_{p}<0$, this expression may be approximated by a

Lorentzian in terms of the collision energy, $E=\hbar^{2} k^{2} / m$ as follows:

$$
\begin{equation*}
\sigma_{1 \mathrm{D}}(E) \approx \frac{\left(\frac{\Gamma}{2}\right)^{2}}{\left(E-E_{\mathrm{res}}\right)^{2}+\left(\frac{\Gamma}{2}\right)^{2}} \tag{S7}
\end{equation*}
$$

Here, $E_{\text {res }}=-\hbar^{2} / l_{p} \xi_{p} m>0$ for $l_{p}<0$ is the above-threshold binding energy of the Feshbach molecule, and $\Gamma=$ $\left(\hbar / \xi_{p}\right) \sqrt{4 E_{\mathrm{res}} / m}$ is the width of the resonance [5].

Figure S4. Typical time evolution of averaged tube population $\left\langle N_{t}\right\rangle$ in 4 shells at $\Delta B=30 \mathrm{mG}$ with $V_{L}=75 E_{r}$. Data are the same as Fig. 2(b) in the main text. Solid curves show fits to Eq. 5 in the main text with $K_{a a}$ and Γ calculated for $T=0.1 T_{F, 1}$.

PROBABILITY DENSITY FUNCTION OF k_{r} FOR A TRAPPED FERMI GAS

The probability density function of k_{r} for a trapped Fermi gas is

$$
\begin{equation*}
P\left(k_{r}\right)=\frac{\hbar}{N_{a}^{2}} \int_{-\infty}^{\infty} d k^{\prime} n\left(k^{\prime}\right) n\left(k^{\prime}-k_{r}\right) \tag{S8}
\end{equation*}
$$

and the k-space number density is given by

$$
\begin{equation*}
n(k)=\frac{1}{2 \pi \hbar} \int_{-\infty}^{\infty} d x \frac{1}{\exp \left[\beta\left(\frac{1}{2} m \omega_{\mathbf{z}}^{2} x^{2}+\frac{\hbar^{2} k^{2}}{2 m}-\mu\right)\right]+1} \tag{S9}
\end{equation*}
$$

where $\beta=1 / k_{\mathrm{B}} T$ and μ is the chemical potential.

DEPENDENCE OF κa_{\perp} ON V_{L}

κ is the magnitude of the wavevector related to the binding energy of the Feshbach molecule, which can be calculated by

$$
\begin{equation*}
\kappa=\frac{\sqrt{m E_{\mathrm{res}}}}{\hbar}=\sqrt{\frac{-1}{l_{p} \xi_{p}}} \tag{S10}
\end{equation*}
$$

where l_{p} and ξ_{p} are the 1D scattering parameters modified from 3D scattering quantities V_{p} and α_{p} with confinement strength a_{\perp} as mentioned in the main text. By Taylor expanding κ^{2} around the Feshbach resonance field $B_{1 \mathrm{D}}$ for a particular V_{L}, we find a constant κ at a fixed magnetic field detuning ΔB which is independent of V_{L} :

$$
\begin{align*}
\kappa^{2}(\Delta B) & =\left.\kappa^{2}\right|_{B=B_{1 D}}+\left.\frac{\partial \kappa^{2}}{\partial B}\right|_{B=B_{1 D}} \Delta B+\left.\frac{\partial^{2} \kappa^{2}}{\partial B^{2}}\right|_{B=B_{1 D}} \Delta B^{2}+O\left(\Delta B^{3}\right) \\
& =\left.\frac{\partial\left(1 / V_{p}\right)}{\partial B}\right|_{B=B_{1 D}} \Delta B+\left.\frac{\partial^{2}\left(1 / V_{p}\right)}{\partial B^{2}}\right|_{B=B_{1 D}} \Delta B^{2}+O\left(\Delta B^{3}\right) \tag{S11}
\end{align*}
$$

Therefore, κa_{\perp} is proportional to $V_{L}^{1 / 4}$ for a particular ΔB, as shown in Fig. S5.

Figure $\mathrm{S} 5 . \kappa a_{\perp}$ as a function of lattice depth V_{L}. Each curve is $V_{L}^{1 / 4}$ with a scaling factor set by ΔB.
[1] B. E. Granger and D. Blume, Phys. Rev. Lett. 92, 133202 (2004).
[2] L. Pricoupenko, Phys. Rev. Lett. 100, 170404 (2008).
[3] D. V. Kurlov and G. V. Shlyapnikov, Phys. Rev. A 95, 032710 (2017).
[4] M. Waseem, Z. Zhang, J. Yoshida, K. Hattori, T. Saito, and T. Mukaiyama, J. Phys. B 49, 204001 (2016).
[5] V. Gurarie and L. Radzihovsky, Ann. Phys. (NY) 322, 2 (2007).

[^0]: * randy@rice.edu

