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Optimization of evaporative cooling
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Recent experiments have used forced evaporative cooling to produce Bose-Einstein condensation in dilute
gases. The evaporative cooling process can be optimized to provide the maximum phase-space density with a
specified number of atoms remaining. We show that this global optimization is approximately achieved by
locally optimizing the cooling efficiency at each instant. We discuss how this method can be implemented, and
present the results for odLi trap. The predicted behavior of the gas is found to agree well with experiment.
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PACS numbses): 32.80.Pj, 42.50.Vk, 51.18y, 44.60+k

The recent observations of Bose-Einstein condensatiodetermines the rate of rethermalization, and the trap loss rate
(BECQ) in dilute atomic vapors have opened an exciting newl". In general, the larger the rati®/T", the more efficient
area of physics resear¢t—3]. These experiments have re- evaporation can be.
lied on forced evaporative cooling-EC) to produce gases  Given a system with specified andT, it is desirable to
with high phase-space density In this process, the hottest know where best to placg,. More precisely, for a given
atoms are selectively removed from a system and the remaifhitial temperature and number of trapped atoms, we wish to
der are allowed to rethermalize via elastic two-body colli- getermine the functiof,(t) that maximizes the phase-space
slons, result!ng Ina co_lder_ and_ more dense distribution. Adensity when a final numbe¥; of trapped atoms is reached.
comprehensive review is given in R¢dl. . , Several models of evaporative cooling have been pro-

The technique is implemented by confining spln—polar|ze%osed[5_13]_ The task is simplified by the fact that, for

atoms in a magnetic trap with potential enetdr). Aoms =, g at Jow temperatures, collisions have pusslyave

are removed by driving transitions between trapped and Unk o acter, and that during evaporation the motion of the

trapped spin states “?ing an oscillating radio-frequency fie_l rapped atoms is classical. Even with these simplifications,
The untrapeed atom is expelled from the trap by a potenti owever, modeling the detailed evolution of the gas is com-
energy U (r). Because the energy difference , iationally intensive. Simple Monte Carlo techniques are
U(r) —U*(r) has a strong monotonic spatial dependence, aﬁrohibitively slow, although more sophisticated Monte Carlo
applied field oscillating with angular frequen*@ will be  ethods have recently been demonstrated that may over-
resonant only at positions such thatU(r)—U*(r)=AQ.  come this obstaclgl2,13. The most precise technique is to
Atoms with total energf<U(r) will not be found ar, and o5t the trapped gas as a continuous fluid obeying the
thus will remain trapped, while atoms with greater energiegsjtzmann transport equatigi4]. A model of this sort was

will be lost. In thls.way, t_hfe frequenc§ defines th_e.depth of developed by Luiteret al. [11], and is used here. They de-
the trap,E, . Elastic collisions among the remaining colder e|op the model for a general trapping potential, but the dis-
atoms replenish the high-energy tail of the distribution, al-cyssjon here is specific to the most practical case of a har-
lowing evaporation to continue. As this proceefisjs low- monic oscillator potentiall (r) = me?2r2/2.

ered to keep pace with the decreasing energy of the atoms. - At time t, the trapped atoms are characterized by a distri-

During evaporation, the trapped atoms are not in therma}, ,1ion functionf(r,p,t), normalized so that
equilibrium, butp can be defined to be the phase-space den- R

sity that would result if the gas were allowed to equilibrate.
If, during a timedt, evaporation changes the number of derd3pf(r,p)

trapped atomdN by dN while p changes bydp, the effi- = 2)
ciency of evaporation is defined to be (27h)
dplp is the number of atoms at positiorwith momentump. The
Y= T GNIN (1) evolution off is governed by the Boltzmann equatifi]

In a lossless trap, in which atoms are removed only by | P J

evaporation, the gfﬁciency can be made arbitrarily Iarg)(/a b); m Ve (V) (Vo) at Fr,p)=1(r,p) =T(nf(r.p).
settingE; to a large value. However, in real traps there are 3

loss mechanisms that continually act on the atoms, and if

E; is made too large, the slow increasepimlue to evapora-

tion will be overwhelmed by the decrease due to losses. FEChe right-hand side describes the effects of collisions. The
therefore depends on both the elastic collision Ritevhich  elastic terml is given by
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o s G s whereE i,=min{E; ,E; E3,E4}. The loss ratd” is
|(r,p1):W f d°p,d°p3d>ps8°(P1+P2—P3—Pa)

I'(E)=T +4(2m)3/2 G rdE’ 5</2h E>)f E’
X 8(p2+pa—p3—p2)[f(r,pa)F(r,ps) (B)=Ty+ =53 Ga | dB" £z h{ g ] T(E,
(11)

—f(r,p)f(r.p2)], (4)

where o is the s-wave elastic cross section. The loss rhte
comprises both the rate for trapped atoms to collide with ho
background gas molecules and the rate for inelastic colli-

whereE_ is the lesser of E,E'} andE. the greater. The
{unction h(x) is the definite integral

sions between trapped atoms: h(x)= fldz 21— 22 x- 22 (12)
0
G, 3
T(r=Ty+ (27h)3 J d*pf(r.p). (5) Evaporation is included by settinf E) = df(E)/dt=0 for

E>E,;. Equations(9)—(11) can be generalized to the aniso-

Here G, is the two-body inelastic rate constant. At high tropic harmonic oscillator by replacing with (wxwywz)m
enough densities three-body or more collisions will also conin g(E). Calculation of an evaporation trajectory using Eq.
tribute, and Eq(5) may easily be extended to account for (9) requires a few hours on a computer workstation.
them. The optimization problem is to determine the best trajec-

A convenient approximation to E¢B) is made by assum- tory from N; to N;. Therefore, the optimization process re-
ing that the motion of atoms in the trap is ergodic. The dis-quires variation of the entire trajectoBy(t) and calculation
tribution functionf(r,p) is then a function only of the en- of the response of the atom distribution. It has been sug-
ergy H(r,p) =p?/(2m) + U(r), which clearly simplifies the gested, however, that the optimuEa can be found at each
equation of motion. Justification for this approximation istimet using only the instantaneous response of the distribu-
discussed in Ref§11] and[15]. To test the approximation, tion, by choosingE,(t) to maximize the efficiency at time
we compared the results of our model to those of a direct [5,4]. This would simplify the calculation since the instan-
Monte Carlo simulation of the atomic motion. The two mod- taneous response is given by E§) directly, while finding
els agreed, within the statistical fluctuations of the Montethe response to the entire trajectory requires the solution of
Carlo results. Similar observations were made by Holland=q. (9).
et al. [13]. However, Wu and Foof12] point out that the In a harmonic trappocN/<E>3:N4/Et3m, where(E) is the
ergodic approximation breaks down in the special case iRerage energy of the trapped atoms &g=N(E) is the

which atoms can only be removed from a spatially restricteqota trap energy. The efficiencycan therefore be expressed
region of the constant-energy surfatkr)=E;. The fast gg

Monte Carlo technique they present is capable of handling

such circumstances. d(Inp) N dEq
In the ergodic approximation, the energy distribution YZ_WZSE_d_N_LL (13
function f(E) is defined such that the number of atoms with tot
energyE is The energyE,,=/dE EE)f(E), and its derivative is ex-
dN=g(E)f(E)dE, ©6) pressed as
whereg(E) is the density of states, given b
9(E) y g y dE. dE./dt f dE EgE)df/dt
(E)=;fd3rd3 SE-H( P =~ (7 dNdN/dt "
for a harmonic oscillator potential. The distribution functions equation (9) gives the derivativedf/dt, so the function
f(E) andf(r,p) are related by v(E,) is well defined and a single-variable optimization al-
gorithm may be used to determiiig. Rather than finding
f(r'p):f dES(H(r,p)—E)f(E), 8) E directly, it is more efficient to optimize the parameter
n=E./(E), because the optimum value gfchanges more

slowly as evaporation proceeds and requires less frequent
optimization checks. It is not clear whether this method
ot (E) could be applied to a model in which the distribution func-
g(E) Tzl(E)—F(E)g(E)f(E). (9) tion is determined by a Monte Carlo technique, since the
derivatives in Eq(14) would not be readily calculable.
This optimization method would be exact if the evolution
of the system depended only dhandp. This can be under-
mo stood by considering the phase-space density produced by
(E)= 273 f dExdEgdE49(Epin) 0(E1+E;—E3z—Ey) the instantaneously optimized trajectopy,s(N), and that of
an alternative trajectory(N). Since pi,s is optimized at
X[f(E3)f(Eq)—f(E))f(Ey)], (10 the beginning of the trajectory, initiallyp,;<pinst- |f

andf(E) obeys

The collision integral, as derived in Refl11], is
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FIG. 1. Solid lines are optimized trajectori&(t) for our “Li FIG. 2. Optimized trajectories through phase space. The arrows

trap[16]. The initial number of trapped atoms is given by the label 9ive the direction of time. The solid curves and the Iong-dashed
on each curve. The initial temperature is 50K in each case. The Curve represent the response of the trapfleichas to the trajecto-
trap oscillation frequencyw:(wxwywz)l’S:ZqTX135.5 Hz. the 'ies shown in Fig. 1. The short-dashed curve shows the optimized

one-particle loss-ratd’,=(300 )L, the two-body rate constant results obtaine_d in the absence of t_wo-body losses, exhibiting run-
G,=1x10 %cnd¥s [17], and the elastic cross section @way evaporation. The dot-dashed line shows the BEC transition, at
o=5x10"13 cn? [18]. The response of the gas to these trajectories? = Pc= 1.202/(2mh)*. Note that the model used is only valid in

is given in Fig. 2. The dashed line is a nonoptimized trajectory,the nondeggneratg regime, but the traje.ctorles are continued past the
which gives the dashed curve shown in Fig. 2. While the trajecto-BEC transition to illustrate how a classical gas would behave.

ries for initial numbers less thanx110® are only shown for times
up to 1200 s, the corresponding curves in Fig. 2 represent long
evaporation times.

tion function evolves classically breaks down sometime be-
Fore the system crosses the BEC phase transition, the results
of the model are shown past this point to illustrate the pre-
dicted behavior of a classical gas.
If the elastic collision rate and loss rate were constant,
E;(t) would have an exponential form. As Fig. 1 shows, the
, , optimumE,(t) is generally nonexponential. The varying cur-
_ dpar(N') _ dpins(N") (15) vatures of the trajectories come about because the collision
dN dN rate and the loss rate vary differently with the number and
temperature of the trapped atoms. To determine the benefit
which is impossible by the construction @f,s(N). So, obtained by optimization, we compare with the results ob-
Pinsi{ N) represents the optimum trajectory. tained using an exponenti&l(t). The time constant of the
Because the evolution of the distribution does depengxponential was determined using the method of Rgffor
on the form of f(E), this optimization scheme is only a trajectory withE,=2(E). The long-dashed curve in Fig. 1
approximately correct. For instance,Mt, pyy=pinst, DUt if  shows the time dependence, and Fig. 2 shows the results of
fa(E) # fins( E), then it is possible for Eq15) to hold, so  the calculation. The optimized trajectory reaches the BEC
that p,(N;) can be larger thamp,s(N¢). By varying the transition in 60% less time and with a factor of 2.4 larger
shape of the distribution, we determined that a distributiorN than the nonoptimized trajectory. Although these gains are
starting with a larger high-energy tail can be driven moresignificant, the fact that the exponential trajectory performs
efficiently than one with a smaller high-energy tail, as mightas well as it does indicates the robustness of the evaporative
be expected. In principle, this fact can be used to construct aooling technique.
trajectory that is more efficient tham,s(t). However, it is In addition to providing a greates(N;), a set of opti-
unlikely that significant gain in phase-space density could benized trajectories such as those shown in Fig. 2 also shows
obtained in this way, because the efficiency possible at @hat initial conditions are required in order to obtain BEC
givenN depends much more gnthan on the details df. To  with a specified final number of atoms. This allows for defi-
test this sensitivity, we modeled evaporation in our trap startnite design goals when developing experiments, and pro-
ing from several nonequilibrium distributions with the samevides a more detailed criterion than the previously under-
N andp. We found that varying the initial number of atoms stood requirement that the collision rate to loss rate ratio
with E>2(E) by a factor of 3 produces the same variation inR/I" must be greater than about 15).
the finalp as is caused by a 5% variation of the initial total Runaway evaporation is not observed for our conditions.
number. This phenomenon is predicted to occur whHefl" increases
We have determined the optimum trajectories in 6ur  as evaporation proceeds, which can happen if the density
trap for a number of initial conditions. The values Bf increaseg4]. Once begun, this process would seem to pro-
versus time are shown in Fig. 1, and the corresponding pathduce arbitrarily large phase-space density increases in very
of the trapped gas through phase space are given by the solidle time. It would be manifested as an upward-curving
curves in Fig. 2. Although the assumption that the distribu~versusN trajectory. An example is the short-dashed curve in

pat(N#) > pinsd N), the two trajectories must cross at some
point N’. This can only occur if
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while warmer points were obtained by imaging the fluores-
cence of the atoms induced by a balanced set of transverse
beams. The agreement between experiment and model is
good, and the discrepancies observed are probably due to
uncertainties in the measurements, the initial conditions and
the trap loss rates. Further investigations should provide in-
teresting tests of the ergodic approximation as well as the
breakdown of the model as BEC is approached.
Determination of optimized trajectories using the method
described is computationally slow. The calculation can be
simplified by approximating the distribution at all times by a
truncated Boltzmann distribution, which allows the integrals
in Eq. (9) to be calculated analyticallj11]. Luitten et al.
tested this approximation using a cooling trajectory in which
Number E. was held constant arld allowed to fall by a factor of 2.
Although they found good agreement with the exact result,
FIG. 3. Comparison of model and experiment. For each datghjs js an inadequate test for the experimental situation in
po_int shown, the trgp was loaded and ther_l evaporatively C°°|e%hich N decreases by many orders of magnitude. We tested
using the model trajectory shown. Evaporation was halted after fhe effect of the approximation using our optimization

variable time, and the number and temperature of the remaining, ye| ' and observed that it resulted in a small overestimate

atoms were measured. The discrepancies observed are within t e . .

uncertainties of the measurement, starting conditions, and trap Io%? theotgfflmgncy of COOImg.‘ When cooling from; 10° to
=10, using the approximation gave the sapi@\;) as

rates. obtained by increasingy; by 5% to 10%. For sufficiently

. L - . ) high N;, the effect onp(N;) is of the same order of magni-
Fig. 2, which is an optimized trajectory calculated with noy,qe and the approximation is probably adequate. As Fig. 2
two-body losses. A few of the real trajectories shown in thelndicates, however, i, is too low FEC does not work. Near

figure do have slight upward curvature at their outsets, bujq threshold for success, the behavior of the model is very
the effect is small and all eventually level out and approachepgitive to the initial conditions, and the Boltzmann ap-
zero efficiency. This is due to the quenching effect of 'nelas'proximation is not valid.

tic two-body collisions. The elastic collision rae is ap- In conclusion, we have presented a technique for deter-
pro_xmatelynov, while the loss rat€~Fl_+ Gzn. So, the mining the optimum trajectory for forced evaporative cool-
ratio R/I" approachesv/G; for largen, which decreases as ng |n most cases the Boltzmann approximation can be used,

T is lowered. Runaway e_vgporation therefore ceases wheRjowing fast computation. The model predicts that optimi-
G,~I';, orn=3x10" cm™* for our experiment. zation can yield significant increases in phase-space density,

We compare the predictions of the evaporative cooling, it also shows that FEC is fairly robust to variations of the
model with experimental results in Fig. 3. The experimentakgjectory and initial conditions, if the initial conditions are

procedures and apparatus have been described in previoysificiently favorable. This robustness makes FEC a very
publications[2,16]. The data points were obtained by load- howerful experimental technique.

ing the trap, evaporatively cooling using a §Kt) for speci-

fied lengths of time, and then taking a picture of the atom This work was supported by the National Science Foun-
distribution using a brief flash of laser light and a charge-dation, the Welch Foundation, and the Texas Advanced
coupled device camera. The colder points on the graph wergechnologies Program. C.A.S. acknowledges the support of
obtained by imaging the absorption of an axial probe beanthe NSF.
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