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Optimization of evaporative cooling

C. A. Sackett, C. C. Bradley, and R. G. Hulet
Physics Department and Rice Quantum Institute, Rice University, Houston, Texas 77005-1892

~Received 29 July 1996!

Recent experiments have used forced evaporative cooling to produce Bose-Einstein condensation in dilute
gases. The evaporative cooling process can be optimized to provide the maximum phase-space density with a
specified number of atoms remaining. We show that this global optimization is approximately achieved by
locally optimizing the cooling efficiency at each instant. We discuss how this method can be implemented, and
present the results for our7Li trap. The predicted behavior of the gas is found to agree well with experiment.
@S1050-2947~97!07005-4#

PACS number~s!: 32.80.Pj, 42.50.Vk, 51.10.1y, 44.60.1k
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The recent observations of Bose-Einstein condensa
~BEC! in dilute atomic vapors have opened an exciting n
area of physics research@1–3#. These experiments have re
lied on forced evaporative cooling~FEC! to produce gases
with high phase-space densityr. In this process, the hottes
atoms are selectively removed from a system and the rem
der are allowed to rethermalize via elastic two-body co
sions, resulting in a colder and more dense distribution
comprehensive review is given in Ref.@4#.

The technique is implemented by confining spin-polariz
atoms in a magnetic trap with potential energyU(r ). Atoms
are removed by driving transitions between trapped and
trapped spin states using an oscillating radio-frequency fi
The untrapped atom is expelled from the trap by a poten
energy U* (r ). Because the energy differenc
U(r )2U* (r ) has a strong monotonic spatial dependence
applied field oscillating with angular frequencyV will be
resonant only at positionsr such thatU(r )2U* (r )5\V.
Atoms with total energyE,U(r ) will not be found atr , and
thus will remain trapped, while atoms with greater energ
will be lost. In this way, the frequencyV defines the depth o
the trap,Et . Elastic collisions among the remaining cold
atoms replenish the high-energy tail of the distribution,
lowing evaporation to continue. As this proceeds,Et is low-
ered to keep pace with the decreasing energy of the ato

During evaporation, the trapped atoms are not in ther
equilibrium, butr can be defined to be the phase-space d
sity that would result if the gas were allowed to equilibra
If, during a time dt, evaporation changes the number
trapped atomsN by dN while r changes bydr, the effi-
ciency of evaporation is defined to be

g52
dr/r

dN/N
. ~1!

In a lossless trap, in which atoms are removed only
evaporation, the efficiency can be made arbitrarily large
settingEt to a large value. However, in real traps there a
loss mechanisms that continually act on the atoms, an
Et is made too large, the slow increase inr due to evapora-
tion will be overwhelmed by the decrease due to losses. F
therefore depends on both the elastic collision rateR, which
551050-2947/97/55~5!/3797~5!/$10.00
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determines the rate of rethermalization, and the trap loss
G. In general, the larger the ratioR/G, the more efficient
evaporation can be.

Given a system with specifiedR andG, it is desirable to
know where best to placeEt . More precisely, for a given
initial temperature and number of trapped atoms, we wish
determine the functionEt(t) that maximizes the phase-spa
density when a final numberNf of trapped atoms is reached

Several models of evaporative cooling have been p
posed@5–13#. The task is simplified by the fact that, fo
bosons at low temperatures, collisions have purelys-wave
character, and that during evaporation the motion of
trapped atoms is classical. Even with these simplificatio
however, modeling the detailed evolution of the gas is co
putationally intensive. Simple Monte Carlo techniques a
prohibitively slow, although more sophisticated Monte Ca
methods have recently been demonstrated that may o
come this obstacle@12,13#. The most precise technique is t
treat the trapped gas as a continuous fluid obeying
Boltzmann transport equation@14#. A model of this sort was
developed by Luitenet al. @11#, and is used here. They de
velop the model for a general trapping potential, but the d
cussion here is specific to the most practical case of a
monic oscillator potentialU(r )5mv2r 2/2.

At time t, the trapped atoms are characterized by a dis
bution functionf (r ,p,t), normalized so that

dN5
d3rd3p f~r ,p!

~2p\!3
~2!

is the number of atoms at positionr with momentump. The
evolution of f is governed by the Boltzmann equation@14#

S pm •¹ r2~¹ rU !•~¹p!1
]

]t D f ~r ,p!5I ~r ,p!2G~r ! f ~r ,p!.

~3!

The right-hand side describes the effects of collisions. T
elastic termI is given by
3797 © 1997 The American Physical Society
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I ~r ,p1!5
s

4p4m\3 E d3p2d
3p3d

3p4d
3~p11p22p32p4!

3d~p1
21p2

22p3
22p4

2!@ f ~r ,p3! f ~r ,p4!

2 f ~r ,p1! f ~r ,p2!# , ~4!

wheres is thes-wave elastic cross section. The loss rateG
comprises both the rate for trapped atoms to collide with
background gas molecules and the rate for inelastic c
sions between trapped atoms:

G~r !5G11
G2

~2p\!3
E d3p f~r ,p!. ~5!

Here G2 is the two-body inelastic rate constant. At hig
enough densities three-body or more collisions will also c
tribute, and Eq.~5! may easily be extended to account f
them.

A convenient approximation to Eq.~3! is made by assum
ing that the motion of atoms in the trap is ergodic. The d
tribution function f (r ,p) is then a function only of the en
ergyH(r ,p)5p2/(2m)1U(r ), which clearly simplifies the
equation of motion. Justification for this approximation
discussed in Refs.@11# and @15#. To test the approximation
we compared the results of our model to those of a dir
Monte Carlo simulation of the atomic motion. The two mo
els agreed, within the statistical fluctuations of the Mon
Carlo results. Similar observations were made by Holla
et al. @13#. However, Wu and Foot@12# point out that the
ergodic approximation breaks down in the special case
which atoms can only be removed from a spatially restric
region of the constant-energy surfaceU(r )5Et . The fast
Monte Carlo technique they present is capable of hand
such circumstances.

In the ergodic approximation, the energy distributi
function f (E) is defined such that the number of atoms w
energyE is

dN5g~E! f ~E!dE, ~6!

whereg(E) is the density of states, given by

g~E!5
1

~2p\!3
E d3rd3pd„E2H~r ,p!…5

E2

2~\v!3
~7!

for a harmonic oscillator potential. The distribution functio
f (E) and f (r ,p) are related by

f ~r ,p!5E dEd„H~r ,p!2E…f ~E!, ~8!

and f (E) obeys

g~E!
] f ~E!

]t
5I ~E!2G~E!g~E! f ~E!. ~9!

The collision integralI , as derived in Ref.@11#, is

I ~E1!5
ms

p2\3 E dE2dE3dE4g~Emin!d~E11E22E32E4!

3@ f ~E3! f ~E4!2 f ~E1! f ~E2!#, ~10!
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whereEmin5min$E1,E2,E3,E4%. The loss rateG is

G~E!5G11
4~2m!3/2

~p\!3
G2E

0

`

dE8
E,
5/2

E2 hSE.

E,
D f ~E8!,

~11!

whereE, is the lesser of$E,E8% andE. the greater. The
functionh(x) is the definite integral

h~x!5E
0

1

dz z2A12z2Ax2z2. ~12!

Evaporation is included by settingf (E)5] f (E)/]t50 for
E.Et . Equations~9!–~11! can be generalized to the anis
tropic harmonic oscillator by replacingv with (vxvyvz)

1/3

in g(E). Calculation of an evaporation trajectory using E
~9! requires a few hours on a computer workstation.

The optimization problem is to determine the best traj
tory from Ni to Nf . Therefore, the optimization process r
quires variation of the entire trajectoryEt(t) and calculation
of the response of the atom distribution. It has been s
gested, however, that the optimumEt can be found at each
time t using only the instantaneous response of the distri
tion, by choosingEt(t) to maximize the efficiency at time
t @5,4#. This would simplify the calculation since the insta
taneous response is given by Eq.~9! directly, while finding
the response to the entire trajectory requires the solution
Eq. ~9!.

In a harmonic trap,r}N/^E&35N4/Etot
3 , where^E& is the

average energy of the trapped atoms andEtot5N^E& is the
total trap energy. The efficiencyg can therefore be expresse
as

g52
d~ lnr!

d~ lnN!
53

N

Etot

dEtot
dN

24. ~13!

The energyEtot5*dE Eg(E)f(E), and its derivative is ex-
pressed as

dEtot
dN

5
dEtot /dt

dN/dt
5

E dE Eg~E!d f /dt

E dE g~E!d f /dt

. ~14!

Equation ~9! gives the derivatived f /dt, so the function
g(Et) is well defined and a single-variable optimization a
gorithm may be used to determineEt . Rather than finding
Et directly, it is more efficient to optimize the paramet
h5Et /^E&, because the optimum value ofh changes more
slowly as evaporation proceeds and requires less freq
optimization checks. It is not clear whether this meth
could be applied to a model in which the distribution fun
tion is determined by a Monte Carlo technique, since
derivatives in Eq.~14! would not be readily calculable.

This optimization method would be exact if the evolutio
of the system depended only onN andr. This can be under-
stood by considering the phase-space density produce
the instantaneously optimized trajectory,r inst(N), and that of
an alternative trajectoryralt(N). Sincer inst is optimized at
the beginning of the trajectory, initiallyralt,rinst. If
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55 3799OPTIMIZATION OF EVAPORATIVE COOLING
ralt(Nf).r inst(Nf), the two trajectories must cross at som
point N8. This can only occur if

2
dralt~N8!

dN
.2

dr inst~N8!

dN
, ~15!

which is impossible by the construction ofr inst(N). So,
r inst(N) represents the optimum trajectory.

Because the evolution of the distribution does depe
on the form of f (E), this optimization scheme is only
approximately correct. For instance, atN8, ralt5rinst, but if
f alt(E)Þ f inst(E), then it is possible for Eq.~15! to hold, so
that ralt(Nf) can be larger thanr inst(Nf). By varying the
shape of the distribution, we determined that a distributio
starting with a larger high-energy tail can be driven mo
efficiently than one with a smaller high-energy tail, as mig
be expected. In principle, this fact can be used to construc
trajectory that is more efficient thanr inst(t). However, it is
unlikely that significant gain in phase-space density could
obtained in this way, because the efficiency possible a
givenN depends much more onr than on the details off . To
test this sensitivity, we modeled evaporation in our trap sta
ing from several nonequilibrium distributions with the sam
N andr. We found that varying the initial number of atom
with E.2^E& by a factor of 3 produces the same variation
the finalr as is caused by a 5% variation of the initial tota
number.

We have determined the optimum trajectories in our7Li
trap for a number of initial conditions. The values ofEt
versus time are shown in Fig. 1, and the corresponding pa
of the trapped gas through phase space are given by the s
curves in Fig. 2. Although the assumption that the distrib

FIG. 1. Solid lines are optimized trajectoriesEt(t) for our
7Li

trap @16#. The initial number of trapped atoms is given by the lab
on each curve. The initial temperature is 500mK in each case. The
trap oscillation frequencyv5(vxvyvz)

1/352p3135.5 Hz, the
one-particle loss-rateG15(300 s)21, the two-body rate constant
G251310214 cm3/s @17#, and the elastic cross section
s55310213 cm2 @18#. The response of the gas to these trajectori
is given in Fig. 2. The dashed line is a nonoptimized trajector
which gives the dashed curve shown in Fig. 2. While the trajec
ries for initial numbers less than 13108 are only shown for times
up to 1200 s, the corresponding curves in Fig. 2 represent lon
evaporation times.
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tion function evolves classically breaks down sometime
fore the system crosses the BEC phase transition, the re
of the model are shown past this point to illustrate the p
dicted behavior of a classical gas.

If the elastic collision rate and loss rate were consta
Et(t) would have an exponential form. As Fig. 1 shows, t
optimumEt(t) is generally nonexponential. The varying cu
vatures of the trajectories come about because the colli
rate and the loss rate vary differently with the number a
temperature of the trapped atoms. To determine the be
obtained by optimization, we compare with the results o
tained using an exponentialEt(t). The time constant of the
exponential was determined using the method of Ref.@4# for
a trajectory withEt52^E&. The long-dashed curve in Fig.
shows the time dependence, and Fig. 2 shows the resul
the calculation. The optimized trajectory reaches the B
transition in 60% less time and with a factor of 2.4 larg
N than the nonoptimized trajectory. Although these gains
significant, the fact that the exponential trajectory perfor
as well as it does indicates the robustness of the evapora
cooling technique.

In addition to providing a greaterr(Nf), a set of opti-
mized trajectories such as those shown in Fig. 2 also sh
what initial conditions are required in order to obtain BE
with a specified final number of atoms. This allows for de
nite design goals when developing experiments, and p
vides a more detailed criterion than the previously und
stood requirement that the collision rate to loss rate ra
R/G must be greater than about 150@9#.

Runaway evaporation is not observed for our conditio
This phenomenon is predicted to occur whenR/G increases
as evaporation proceeds, which can happen if the den
increases@4#. Once begun, this process would seem to p
duce arbitrarily large phase-space density increases in
little time. It would be manifested as an upward-curvingr
versusN trajectory. An example is the short-dashed curve

l

s
,
-

er

FIG. 2. Optimized trajectories through phase space. The arr
give the direction of time. The solid curves and the long-dash
curve represent the response of the trapped7Li gas to the trajecto-
ries shown in Fig. 1. The short-dashed curve shows the optim
results obtained in the absence of two-body losses, exhibiting
away evaporation. The dot-dashed line shows the BEC transitio
r5rc51.202/(2p\)3. Note that the model used is only valid i
the nondegenerate regime, but the trajectories are continued pa
BEC transition to illustrate how a classical gas would behave.
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Fig. 2, which is an optimized trajectory calculated with
two-body losses. A few of the real trajectories shown in
figure do have slight upward curvature at their outsets,
the effect is small and all eventually level out and approa
zero efficiency. This is due to the quenching effect of inel
tic two-body collisions. The elastic collision rateR is ap-
proximatelynsv, while the loss rateG'G11G2n. So, the
ratioR/G approachessv/G2 for largen, which decreases a
T is lowered. Runaway evaporation therefore ceases w
G2'G1 , or n'331011 cm23 for our experiment.

We compare the predictions of the evaporative cool
model with experimental results in Fig. 3. The experimen
procedures and apparatus have been described in pre
publications@2,16#. The data points were obtained by loa
ing the trap, evaporatively cooling using a setV(t) for speci-
fied lengths of time, and then taking a picture of the at
distribution using a brief flash of laser light and a charg
coupled device camera. The colder points on the graph w
obtained by imaging the absorption of an axial probe be

FIG. 3. Comparison of model and experiment. For each d
point shown, the trap was loaded and then evaporatively co
using the model trajectory shown. Evaporation was halted aft
variable time, and the number and temperature of the remai
atoms were measured. The discrepancies observed are withi
uncertainties of the measurement, starting conditions, and trap
rates.
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while warmer points were obtained by imaging the fluore
cence of the atoms induced by a balanced set of transv
beams. The agreement between experiment and mod
good, and the discrepancies observed are probably du
uncertainties in the measurements, the initial conditions
the trap loss rates. Further investigations should provide
teresting tests of the ergodic approximation as well as
breakdown of the model as BEC is approached.

Determination of optimized trajectories using the meth
described is computationally slow. The calculation can
simplified by approximating the distribution at all times by
truncated Boltzmann distribution, which allows the integra
in Eq. ~9! to be calculated analytically@11#. Luitten et al.
tested this approximation using a cooling trajectory in wh
Et was held constant andN allowed to fall by a factor of 2.
Although they found good agreement with the exact res
this is an inadequate test for the experimental situation
whichN decreases by many orders of magnitude. We tes
the effect of the approximation using our optimizatio
model, and observed that it resulted in a small overestim
of the efficiency of cooling. When cooling fromNi;108 to
Nf5105, using the approximation gave the samer(Nf) as
obtained by increasingNi by 5% to 10%. For sufficiently
highNi , the effect onr(Nf) is of the same order of magni
tude, and the approximation is probably adequate. As Fig
indicates, however, ifNi is too low FEC does not work. Nea
the threshold for success, the behavior of the model is v
sensitive to the initial conditions, and the Boltzmann a
proximation is not valid.

In conclusion, we have presented a technique for de
mining the optimum trajectory for forced evaporative coo
ing. In most cases the Boltzmann approximation can be u
allowing fast computation. The model predicts that optim
zation can yield significant increases in phase-space den
but it also shows that FEC is fairly robust to variations of t
trajectory and initial conditions, if the initial conditions ar
sufficiently favorable. This robustness makes FEC a v
powerful experimental technique.
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Technologies Program. C.A.S. acknowledges the suppo
the NSF.

ta
d
a
g
the
ss
p-

C.

s.

m

@1# M. J. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wiem
and E. A. Cornell, Science269, 198 ~1995!.

@2# C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hul
Phys. Rev. Lett.75, 1687~1995!.

@3# K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Drute
D. S. Durfee, D. M. Kurn, and W. Ketterle, Phys. Rev. Le
75, 3969~1995!.

@4# W. Ketterle and N. J. van Druten, inAdvances in Atomic,
Molecular and Optical Physics, edited by B. Bederson and H
Walther ~Academic Press, San Diego, 1996!, No. 36.

@5# H. F. Hess, Phys. Rev. B34, 3476~1986!.
@6# T. Tommila, Europhys. Lett2, 789 ~1986!.
@7# D. W. Snoke and J. P. Wolfe, Phys. Rev. B39, 4030~1989!.
,

,

@8# J. M. Doyle, J. C. Sandberg, I. A. Yu, C. L. Cesar, D. Klep
ner, and T. J. Greytak, Physica B194-196, 13 ~1994!.

@9# C. R. Monroe, E. A. Cornell, C. A. Sackett, C. J. Myatt, and
E. Wieman, Phys. Rev. Lett.70, 414 ~1993!.

@10# K. B. Davis, M.-O. Mewes, and W. Ketterle, Appl. Phys. B60,
155 ~1995!.

@11# O. J. Luiten, M. W. Reynolds, and J. T. M. Walraven, Phy
Rev. A 53, 381 ~1996!.

@12# H. Wu and C. J. Foot, J. Phys. B29, 321 ~1996!.
@13# M. Holland, J. Williams, K. Coakley, and J. Cooper, Quantu

Semiclass. Opt.8, 571 ~1996!.
@14# K. Huang, Statistical Mechanics, 2nd ed. ~John Wiley and

Sons, New York, 1987!.



s

et G.

55 3801OPTIMIZATION OF EVAPORATIVE COOLING
@15# E. L. Surkov, J. T. M. Walraven, and G. V. Shlyapnikov, Phy
Rev. A 53, 3403~1996!.

@16# J. J. Tollett, C. C. Bradley, C. A. Sackett, and R. G. Hul
Phys. Rev. A51, R22 ~1995!.
.

,

@17# A. J. Moerdijk and B. J. Verhaar, Phys. Rev. A53, R19
~1996!.

@18# E. R. I. Abraham, W. I. McAlexander, C. A. Sackett, and R.
Hulet, Phys. Rev. Lett.74, 1315~1995!.


