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Growth and Collapse of a Bose-Einstein Condensate with Attractive Interactions
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We consider the dynamics of a quantum degenerate trapped gas of7Li atoms. Because the atoms
have a negatives-wave scattering length, a Bose condensate of7Li becomes mechanically unstable
when the number of condensate atoms approaches a maximum value. We calculate the dynam
of the collapse that occurs when the unstable point is reached. In addition, we use the quantu
Boltzmann equation to investigate the nonequilibrium kinetics of the atomic distribution during and
after evaporative cooling. The condensate is found to undergo many cycles of growth and collaps
before a stationary state is reached. [S0031-9007(98)05489-1]
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The recent observations of Bose-Einstein condensati
(BEC) in weakly interacting gases [1] has enabled a seri
of beautiful experiments that probe the dynamics of th
condensate. The frequency and damping of the collecti
modes of a condensate [2], propagation of sound in
condensate [3], and, recently, the growth of the condens
[4] have been reported. Although these experiments ha
used atoms with positives-wave scattering lengths, we
show in this paper that the dynamical behavior of
negative scattering length gas, such as7Li, is especially
interesting, and offers the opportunity to directly observ
and study macroscopic quantum tunneling.

A negative scattering lengtha implies effectively attrac-
tive interactions. In a spatially homogeneous gas, the
interactions lead to ordinary classical condensation into
liquid or solid, preventing Bose-Einstein condensation i
the metastable region of the phase diagram [5]. How
ever, confinement in an atom trap produces stabilizin
forces that enable the formation of a metastable Bos
Einstein condensate, if the number of condensed atoms
less than some maximum numberNm. For a harmonic
trap, Ruprechtet al. [6] showed that in mean-field theory
Nm . 0.57lyjaj, wherel ­ sh̄ymvd1y2 is the extent of the
one-particle ground state in the harmonic trap [7]. Fo
the7Li experiments of Ref. [8],Nm . 1400 atoms, which
agrees with the measured value.

Although a condensate can exist in a trapped gas,
is predicted to be metastable and to decay by quantu
or thermal fluctuations [9–11]. The condensate has on
one unstable collective mode, which in the case of a
isotropic trap corresponds to the breathing mode [12,13
The condensate therefore collapses as a whole, either
thermal excitation over or by quantum mechanical tun
neling through a macroscopic energy barrier in configu
ration space. The probability of forming small, dens
clusters is greatly suppressed because of the large
ergy barrier for this process, compared to that for th
breathing mode. This suppression can also be understo
from the fact that the typical length scale for fluctua
0031-9007y98y80(10)y2031(4)$15.00
on
es
e
ve
a
te

ve

a

e

se
a

n
-
g
e-
is

r

it
m
ly
n
].
by
-
-

e
en-
e
od

-

tions of the condensate is the healing length, which
approximately equal to the condensate size near the ins
bility point.

Experimentally, it is also important to understand how
such a condensate can be formed from a noncondens
cloud by means of evaporative cooling. This questio
was recently addressed by Gardineret al. in the context of
experiments with gases havinga . 0 [14]. These authors
neglect the coherent dynamics of the condensate and foc
instead on the kinetics of condensation [15]. By treatin
the noncondensed atoms as a static “heat bath,” they
able to derive a simple equation for the growth of th
number of condensate particles that appears to fit well wi
experimental results [4]. The same approach, howeve
does not work in the case of atomic7Li because it does not
allow for the collapse of the condensate. Moreover, th
process of evaporative cooling leads to dynamical chang
in the noncondensed heat bath. The study of these effe
on the dynamics of the condensate is the main topic of th
Letter. Some preliminary results have already appeared
a recent review article [16].

When collisions can be neglected, the dynamics of th
condensate wave functionc for a gas with a , 0 is
well described by the nonlinear Schrödinger (or Gross
Pitaevskii [17]) equation

ih̄
≠csx, td

≠t
­

µ
2

h̄2=2

2m
1 V sxd

∂
csx, td

1 T2Bs0, 0; 0d jcsx, tdj2csx, td . (1)

Herem denotes the mass of7Li, T2Bs0, 0; 0d ­ 4pah̄2ym
is the two-bodyT matrix, anda is the scattering length of
227a0 [18]. For the external trapping potentialV sxd we
take a harmonic potential with an effective isotropic leve
splitting h̄v ­ h̄svxvyvzd1y3 of 7 nK [8]. Note that we
ignore the mean-field contribution from the noncondense
atoms [19], because it is nearly constant over the siz
of the condensate and therefore only slightly affects th
condensate dynamics.
© 1998 The American Physical Society 2031
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This description is semiclassical, and also neglec
quantum and thermal fluctuations. These fluctuations a
most easily incorporated by means of the partition fun
tion of the condensate, which is a functional integraR

dfcpgdfcg exps2Sfcp, cgyh̄d over all periodic configu-
rations of the condensate, with a weight determined by t
(Euclidean) action of the nonlinear Schrödinger equatio
This partition function is calculated in terms of the den
sity and phase of the condensate, defined byc ­

p
r eix .

The Gaussian integral over the phase fieldx can be per-
formed exactly, leaving only the determination of the
functional integral

R
dfrg exps2Sfrgyh̄d.

Unfortunately, this integral cannot be calculated ex
actly. However, since we are primarily interested in th
dynamics of the unstable breathing mode of the conde
sate, we can use a variational method [11,20] and consid
only Gaussian density profiles

rsssx; qstdddd ­ N0

µ
1

pq2std

∂3y2

exp

µ
2

x2

q2std

∂
. (2)

Substituting this profile in the actionSfrg, we find that the
dynamics of the condensate is equivalent to the dynam
of a fictitious particle with massmp ­ 3N0my2 in the
unstable potential [21]

Usqd ­ N0

µ
3h̄2

4mq2 1
3
4

mv2q2 2
N0p
2p

h̄2jaj

mq3

∂
. (3)

The rate of decay for both quantum tunneling and the
mal fluctuations can be calculated within this formalism
[11] and are shown in Fig. 1. For large numbers o
condensate atoms, these collective decay mechanisms
much faster than the decay caused by inelastic two- a
three-body collisions, since the energy barrier out of th
metastable minimum vanishes asN0 approachesNm. At
experimentally relevant temperatures of 300 to 500 nK, th

FIG. 1. Decay rate of the condensate as a function of th
number of condensate particles at 0, 100, 200, 300, 400, a
500 nK. The dashed line shows the decay due to inelastic tw
and three-body collisions [22].
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collective decay processes dominate forN0 greater than
about 1100 atoms. Besides the calculation of the dec
rates, the above analogy also allows study of the dynam
of the collapse that occurs after the condensate has b
driven out of its metastable minimum. A typical exampl
is shown in Fig. 2. At first, the condensate collapses w
increasing speed along the potential hill outside the b
rier. However, during the collapse, the condensate dens
grows rapidly, thereby increasing the decay rate from i
elastic two- and three-body collisions. Atoms that inela
tically collide acquire substantial energy and are eject
from the trap. Because of these loss mechanisms, the
lapse is arrested when the number of condensate atom
of the order of one. Atoms are lost so quickly that th
density of the condensate always obeysnjaj3 ø 1, which
is a necessary requirement for the validity of the nonli
ear Schrödinger equation (1). If there were no inelas
collisions, the condensate would fully collapse [23], an
a more complex theory would be needed. In principl
fluctuations still become important at the end of the co
lapse whenN0 is about 1, but this should hardly affec
Fig. 2.

The above remarks pertain to the dynamics of the co
densate in the absence of collisions with noncondens
atoms, but so far all experiments producing BEC ha
relied on evaporative cooling, which requires such col
sions. Therefore, we investigate the kinetics of conde
sation in a trapped gas, using the Boltzmann transp
equation in a way similar to the treatment of evaporativ
cooling in Refs. [24,25]. In this approach, the semicla
sical distribution functionfsx, pd is defined such that
the number of atoms at positionx with momentump
is dxdpfsx, pdys2p h̄d3. The evolution off is given
by [26]

d
dt

fsx, p, td ­ Isx, pd 2 Gsxdfsx, pd , (4)

FIG. 2. Typical evolution of the condensate during collaps
The main figure shows the size of the condensate, and the in
shows the number of condensate atoms.
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where the derivative on the left is the total time derivative. The effect of elastic collisions is expressed as

Isx, p1d ­
s

4p4mh̄3

Z
dp2 dp3 dp4 d3sp1 1 p2 2 p3 2 p4d dsp2

1 1 p2
2 2 p2

3 2 p2
4d

3 f f3f4s1 1 f1d s1 1 f2d 2 f1f2s1 1 f3d s1 1 f4dg , (5)
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where the factorss1 1 fid account for the Bose statistic
of the atoms. Herefi stands forfsx, pid ands ­ 8pa2.
The loss rate from the trap is given byGsxd ­ G1 1

G2

R
dp fsx, pdys2p h̄d3, where the terms withG1 andG2

reflect, respectively, collisions with hot background g
atoms and inelastic collisions between trapped atoms.

As for the case of a classical gas [24,25], Eq. (4) can
simplified by taking the motion of the atoms to be ergod
so that an atom with a given energy will sample ea
available element ofhx, pj space with equal probability
The distribution functionfsx, pd can then be expressed i
terms of the energy distribution functionfsEd, through the
relation

fsx, pd ­
Z

dE dsssHsx, pd 2 EdddfsEd , (6)

whereHsx, pd ­ p2y2m 1 V sxd is the classical Hamil-
tonian. The differential equation forfsE, td is derived
by substituting (6) into (4), as is described in detail
Refs. [24,25]. The only difference here is the use of Bo
statistics, which requires the insertion of factors1 1 fsEid
as in Eq. (5). Although the semiclassical approximati
results in a continuous functionfsEd, the quantum nature
of the trapped gas can be recovered by restrictingfsEd to
valuesEn ­ sn 1 3y2dh̄v. Note thatfsE, td can also be
determined using a Monte Carlo technique [27].

The above model neglects the effect of the mean-fi
interaction energy. Per atom, however, this interaction
ergy is limited to about̄hv by the stability criterion aris-
ing from a being negative, which limits the effects of th
mean-field energy on the kinetics of the gas. The ac
racy of the approximations can be checked by consider
collisions between condensate atoms, since the mean-
interaction is largest in the condensate and the semic
sical approximation is least accurate for the ground st
of the trap. We compare the rates for inelastic collisio
between condensate atoms,G2

R
dx rsxd2, which depend

only on the density distribution. The semiclassical dist
bution derived from Eq. (6) is

rsxd ­

µ
2

3p

∂2µN0

l3

∂ µ
3 2

x2

l2

∂1y2

, (7)

while the exact distribution is given by Eq. (2). From the
distributions, the ratio of the exact and approximate co
sion rates is1.2slyqd3. When interactions are small, the
q . l, and the error caused by the semiclassical appro
mation is only 20%. However, the mean-field interacti
causesq to decrease asN0 grows. The variational cal-
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culations givesq ­ 0.67l just before the collapse. The
collision rate is then inaccurate by a factor of 4, and co
lision terms for other low-lying states will have similar,
though smaller, errors. Although these errors are signi
cant, they only occur forN0 relatively close toNm. For
instance, atN0 . 0.8Nm, the error is a factor of 2. Because
N0 $ 0.8Nm for only a small fraction of time, the approxi-
mations are still useful, but for largeN0 the quantitative
predictions of the model will be somewhat inaccurate.

The possibility for the condensate to collapse is include
in the model using the decay rates given in Fig. 1.
random number is chosen to determine whether a dec
occurs during an integration time step, and when one do
the condensate number is set to zero reflecting the ra
loss shown in Fig. 2. Also, evaporative cooling is include
by settingfsEd ­ 0 for E . Ecstd, where Ecstd is the
experimentally set cutoff energy.

The response of the condensate number to evaporat
cooling is shown in Fig. 3. The condensate alternately fil
and collapses, until finally the phase-space density of t
gas is too low to reachN0 . Nm. The slow final decay
is due to the trap losses. Qualitatively similar behavio
has been found after submission of this Letter by Kaga
et al. [28], although we differ quantitatively in the number
of condensate atoms remaining after a collapse.

In Fig. 3, evaporative cooling was halted att ­ 5 s, but
the oscillations inN0 persist for an anomalously long time
compared to the elastic collision timetc ­ 1yknsyl .
0.8 s. In order to investigate this phenomenon further, th

FIG. 3. Typical evolution of condensate numberN0 in re-
sponse to evaporative cooling. The gas initially consists
4 3 105 atoms at 500 nK. During the first 5 s of evolution,
roughly 40% of the atoms are removed by evaporative coolin
after which evaporation is halted.
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FIG. 4. Equilibration of a degenerate gas. Using the sam
conditions as in Fig. 3, at each time the density distribution
fit to an equilibrium density distribution, and the resulting valu
of x2 plotted.

density profiles generated by the model were fit to equ
librium Bose-Einstein distributions at various times. Th
values ofx2 resulting from the fits are plotted in Fig. 4.
After reaching degeneracy, the curve shows an appro
mately exponential approach to equilibrium, with a tim
constant of about10tc. The same test performed on a
nondegenerate cloud initially prepared in a nonequili
rium state yields an equilibration time of5tc. The slower
approach to equilibrium for the degenerate case is p
sumably caused by the small phase-space volume of
condensate, and the fact that due to the limitN0 , Nm,
the stimulated Bose scattering factors in Eq. (4) cann
become as enormous as they might in thea . 0 case. Fur-
thermore, the oscillations inN0 will persist until the distri-
bution is very close to equilibrium, since the total numbe
of atoms in the trap is much greater thanNm.

Note, finally, that the evolution in Fig. 3 represents onl
one possible outcome of evaporative cooling, and that b
cause of the stochastic nature of the collapse a given evo
tion is not repeatable. Experimental measurements ofN0
in the degenerate regime should, however, exhibit lar
fluctuations between 0 andNm. Observation of such fluc-
tuations and measurement of their statistics would provi
confirmation of the collective nature of the collapse.
sufficiently low temperatures can be reached, these flu
tuations would be evidence of macroscopic quantum tu
neling. We therefore believe that a dilute Bose gas wi
a , 0 presents unique opportunities for studying the d
namical properties of a condensate.
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