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Growth and Collapse of a Bose-Einstein Condensate with Attractive Interactions
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We consider the dynamics of a quantum degenerate trapped das atbms. Because the atoms
have a negativa-wave scattering length, a Bose condensatée Lofbecomes mechanically unstable
when the number of condensate atoms approaches a maximum value. We calculate the dynamics
of the collapse that occurs when the unstable point is reached. In addition, we use the quantum
Boltzmann equation to investigate the nonequilibrium kinetics of the atomic distribution during and
after evaporative cooling. The condensate is found to undergo many cycles of growth and collapse
before a stationary state is reached. [S0031-9007(98)05489-1]

PACS numbers: 03.75.Fi, 32.80.Pj, 42.50.Vk, 67.40.—w

The recent observations of Bose-Einstein condensatiotions of the condensate is the healing length, which is
(BEC) in weakly interacting gases [1] has enabled a serieapproximately equal to the condensate size near the insta-
of beautiful experiments that probe the dynamics of thebility point.
condensate. The frequency and damping of the collective Experimentally, it is also important to understand how
modes of a condensate [2], propagation of sound in guch a condensate can be formed from a noncondensed
condensate [3], and, recently, the growth of the condensatdoud by means of evaporative cooling. This question
[4] have been reported. Although these experiments haweas recently addressed by Gardieeal. in the context of
used atoms with positive-wave scattering lengths, we experiments with gases haviag> 0 [14]. These authors
show in this paper that the dynamical behavior of aneglect the coherent dynamics of the condensate and focus
negative scattering length gas, such’hg is especially instead on the kinetics of condensation [15]. By treating
interesting, and offers the opportunity to directly observethe noncondensed atoms as a static “heat bath,” they are
and study macroscopic quantum tunneling. able to derive a simple equation for the growth of the

A negative scattering lengthimplies effectively attrac- number of condensate particles that appears to fit well with
tive interactions. In a spatially homogeneous gas, thesexperimental results [4]. The same approach, however,
interactions lead to ordinary classical condensation into does not work in the case of atonici because it does not
liquid or solid, preventing Bose-Einstein condensation inallow for the collapse of the condensate. Moreover, the
the metastable region of the phase diagram [5]. Howprocess of evaporative cooling leads to dynamical changes
ever, confinement in an atom trap produces stabilizingn the noncondensed heat bath. The study of these effects
forces that enable the formation of a metastable Bosesn the dynamics of the condensate is the main topic of this
Einstein condensate, if the number of condensed atoms isetter. Some preliminary results have already appeared in
less than some maximum numb®y,. For a harmonic a recent review article [16].
trap, Ruprechet al. [6] showed that in mean-field theory =~ When collisions can be neglected, the dynamics of the
N,, = 0.571/|a|, wherel = (i/mw)'/? isthe extentofthe condensate wave functiofr for a gas witha < 0 is
one-particle ground state in the harmonic trap [7]. Fomwell described by the nonlinear Schroédinger (or Gross-
the’Li experiments of Ref. [8]N,, = 1400 atoms, which  Pitaevskii [17]) equation
agrees with the measured value. -

Although a condensate can exist in a trapped gas, it ;5 I (x,1) - <_ﬂ + V(X)>¢,(X )
is predicted to be metastable and to decay by quantum ot 2m ’
or thermal fluctuations [9—11]. The condensate has only + T28(0,0,0) [y (x, )Py (x,1). (1)
one unstable collective mode, which in the case of an
isotropic trap corresponds to the breathing mode [12,13Herem denotes the mass ofi, 722(0,0;0) = 47ah*/m
The condensate therefore collapses as a whole, either ligythe two-bodyl" matrix, anda is the scattering length of
thermal excitation over or by quantum mechanical tun-—27a, [18]. For the external trapping potentit(x) we
neling through a macroscopic energy barrier in configutake a harmonic potential with an effective isotropic level
ration space. The probability of forming small, densesplittingzZw = h(wxwywz)l/3 of 7 nK [8]. Note that we
clusters is greatly suppressed because of the large eignore the mean-field contribution from the noncondensed
ergy barrier for this process, compared to that for theatoms [19], because it is nearly constant over the size
breathing mode. This suppression can also be understoad the condensate and therefore only slightly affects the
from the fact that the typical length scale for fluctua- condensate dynamics.
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This description is semiclassical, and also neglectgollective decay processes dominate My greater than
quantum and thermal fluctuations. These fluctuations arabout 1100 atoms. Besides the calculation of the decay
most easily incorporated by means of the partition funcrates, the above analogy also allows study of the dynamics
tion of the condensate, which is a functional integralof the collapse that occurs after the condensate has been
[ d[y*1d[y]exp(—S[*, 1/ k) over all periodic configu-  driven out of its metastable minimum. A typical example
rations of the condensate, with a weight determined by thes shown in Fig. 2. At first, the condensate collapses with
(Euclidean) action of the nonlinear Schrodinger equationincreasing speed along the potential hill outside the bar-
This partition function is calculated in terms of the den-rier. However, during the collapse, the condensate density
sity and phase of the condensate, defineg/by ./p ¢’*.  grows rapidly, thereby increasing the decay rate from in-
The Gaussian integral over the phase figldan be per- elastic two- and three-body collisions. Atoms that inelas-
formed exactly, leaving only the determination of thetically collide acquire substantial energy and are ejected
functional integralf d[p]lexp(—S[p]/h). from the trap. Because of these loss mechanisms, the col-

Unfortunately, this integral cannot be calculated ex-lapse is arrested when the number of condensate atoms is
actly. However, since we are primarily interested in theof the order of one. Atoms are lost so quickly that the
dynamics of the unstable breathing mode of the conderdensity of the condensate always obeys|* < 1, which
sate, we can use a variational method [11,20] and considés a necessary requirement for the validity of the nonlin-
only Gaussian density profiles ear Schrodinger equation (1). If there were no inelastic

1 3/2 x2 collisions, the condensate would fully collapse [23], and
p(x;q() = No<—2> ex;{— 5 > (2) a more complex theory would be needed. In principle,
mq*(1) q*(1) fluctuations still become important at the end of the col-
Substituting this profile in the actias{ p ], we find that the lapse whenV, is about 1, but this should hardly affect
dynamics of the condensate is equivalent to the dynamidsig. 2.
of a fictitious particle with mass:* = 3Nym/2 in the The above remarks pertain to the dynamics of the con-
unstable potential [21] densate in the absence of collisions with noncondensed
32 3 No 2l atoms, but so far_all expt_ariment_s produc_:ing BEC haye

Ulg) = N0<—2 + S mw?q® - —— 3 ) (3) relied on evaporative cooling, which requires such colli-

4mq 4 V27 mg’ sions. Therefore, we investigate the kinetics of conden-

The rate of decay for both quantum tunneling and therSation in a trapped gas, using the Boltzmann transport
mal fluctuations can be calculated within this formalismeduation in a way similar to the treatment of evaporative
[11] and are shown in Fig. 1. For large numbers Ofc_oollng. |n.Ref's. [24,25]. In this gpproaph, the semiclas-
condensate atoms, these collective decay mechanisms &iga! distribution functionf(x,p) is defined such that
much faster than the decay caused by inelastic two- anif€ number of atoms; at position with momentump
three-body collisions, since the energy barrier out of theS 4Xdpf(x,p)/(2mh)’. The evolution off is given
metastable minimum vanishes &g approache®v,,. At by
experimentally relevant temperatures of 300 to 500 nK, the

©fp) = 10,p) - TRR), @)
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FIG. 1. Decay rate of the condensate as a function of the @
number of condensate particles at 0, 100, 200, 300, 400, arElG. 2. Typical evolution of the condensate during collapse.

500 nK. The dashed line shows the decay due to inelastic twdhe main figure shows the size of the condensate, and the inset

and three-body collisions [22]. shows the number of condensate atoms.
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where the derivative on the left is the total time derivative. The effect of elastic collisions is expressed as
g
15,p1) = ;= — fdpz dp3dps 8°(p1 + p2 — ps — p4) 8(pi + p3 — p3 — p3)

X [fafs(l + fO)A + f2) = fifa(1 + f3) (1 + fa)l, 5)

where the factor¢l + f;) account for the Bose statistics culations givesy = 0.67! just before the collapse. The
of the atoms. Her¢; stands forf(x,p;) ando = 87a>.  collision rate is then inaccurate by a factor of 4, and col-
The loss rate from the trap is given Hy(x) = G; + lision terms for other low-lying states will have similar,
G, [dp f(x,p)/(2mh)?, where the terms witli; andG,  though smaller, errors. Although these errors are signifi-
reflect, respectively, collisions with hot background gascant, they only occur fow, relatively close tav,,. For
atoms and inelastic collisions between trapped atoms. instance, alVy = 0.8N,,, the error is a factor of 2. Because
As for the case of a classical gas [24,25], Eq. (4) can b&/y = 0.8N,, for only a small fraction of time, the approxi-
simplified by taking the motion of the atoms to be ergodic,mations are still useful, but for larg¥, the quantitative
so that an atom with a given energy will sample eactpredictions of the model will be somewhat inaccurate.
available element ofx, p} space with equal probability. The possibility for the condensate to collapse is included
The distribution functiory'(x, p) can then be expressed in in the model using the decay rates given in Fig. 1. A
terms of the energy distribution functigii£), through the random number is chosen to determine whether a decay
relation occurs during an integration time step, and when one does
the condensate number is set to zero reflecting the rapid
_ _ loss shown in Fig. 2. Also, evaporative cooling is included
f(x.p) j dES(H(x.p) — E)f(E), ©) by setting f(E) = 0 for E > E.(t), where E.(¢) is the
experimentally set cutoff energy.
where H(x,p) = p*>/2m + V(x) is the classical Hamil-  The response of the condensate number to evaporative
tonian. The differential equation fof(E, ) is derived  cooling is shown in Fig. 3. The condensate alternately fills
by substituting (6) into (4), as is described in detail inand collapses, until finally the phase-space density of the
Refs. [24,25]. The only difference here is the use of Bosgyas is too low to reactVy = N,,. The slow final decay
statistics, which requires the insertion of factors: f(E;) s due to the trap losses. Qualitatively similar behavior
as in Eg. (5). Although the semiclassical approximationhas been found after submission of this Letter by Kagan
results in a continuous functiof(£), the quantum nature et al. [28], although we differ quantitatively in the number
of the trapped gas can be recovered by restricfii) to  of condensate atoms remaining after a collapse.
valuesE, = (n + 3/2)hiw. Note thatf(E,r) canalsobe  |nFig. 3, evaporative cooling was haltectat 5 s, but
determined using a Monte Carlo technique [27]. the oscillations inV, persist for an anomalously long time
The above model neglects the effect of the mean—field;ompared to the elastic collision time = 1/(nov) =
interaction energy. Per atom, however, this interaction eng g s. In order to investigate this phenomenon further, the
ergy is limited to aboutiw by the stability criterion aris-
ing from a being negative, which limits the effects of the 1500 T T T T T T
mean-field energy on the kinetics of the gas. The accu-
racy of the approximations can be checked by considering
collisions between condensate atoms, since the mean-field
interaction is largest in the condensate and the semiclas- 1000
sical approximation is least accurate for the ground state
of the trap. We compare the rates for inelastic collisions =
between condensate atoni®, | dx p(x)?, which depend
only on the density distribution. The semiclassical distri-
bution derived from Eq. (6) is

w262 o
10 20 30 40

0
while the exact distribution is given by Eq. (2). From these 1(s)
distributions, the ratio of the exact and approximate colli- _ _ _
sion rates is.2(1/¢)>. When interactions are small, then FIG: 3. Typical evolution of condensate numbj in re-

. . . sponse to evaporative cooling. The gas initially consists of
q = 1, and the error caused by the semiclassical approxiy’ o5 atoms at 500 nK. During the first 5 s of evolution,

mation is only 20%. However, the mean-field interactionroughly 40% of the atoms are removed by evaporative cooling,
causesy to decrease ad/y, grows. The variational cal- after which evaporation is halted.
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FIG. 4. Equilibration of a degenerate gas.
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