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Bose-Einstein condensation of 7 Li has been studied in a magnetically trapped gas.
Many-body quantum theory predicts that the occupation number of the conden-
sate is limited to about 1400 atoms because of the effectively attractive interactions
between " Li atoms. Using a versatile phase-contrast imaging technique, we exper-
imentally observe the condensate number to be consistent with this limit. We
discuss our measurements, the current theoretical understanding of BEC in a gas
with attractive interactions, and planned experiments to observe the predicted
collective collapse of the condensate.

1 Introduction

In 1995, Bose-Einstein condensation (BEC) was created in magnetically trapped
atomic gases of 3"Rb! "Li? and **Na2 Although the condensates are very di-
lute gases, the interactions between atoms can still play a significant role in
determining their physical properties. In the case of "Li, where the interactions
are effectively attractive, it had been long believed that BEC could not occur at
all in a gas®> However, it is now realized that for a trapped gas, the confining
potential has a stabilizing influence, and BEC is possible for a limited number
of atoms in the condensate’ In this report, we briefly describe the current
theoretical understanding of BEC in a gas with attractive interactions, and
then discuss our new measurements and their analysis. Finally, we describe
some of the experiments we hope to perform in order to further investigate the
dynamics of a Bose-Einstein condensate with attractive interactions.

2 Theory

Interactions between ultracold bosons may be characterized by a single param-
eter, the s-wave scattering length a.” The magnitude of a indicates the strength
of the interaction, while the sign determines whether the interactions are effec-
tively attractive (a < 9) or repulsive (a > 0). The scattering length for "Li is
known to be —1.45+0.04 nm? Only two-body interactions need be considered
for densities n such that na® <« 1, which is the case for the experimentally



32

achieved densities of n < 103 ecm™3.

The effects of attractive interactions on the condensate have been studied
using mean-field theory. In this approximation, the interaction part of the
Hamiltonian is replaced by its mean value, resulting in an interaction energy of
U = 4wh*an/m, where m is the atomic mass.” Because a < 0, U/ decreases with
increasing n, making the gas mechanically unstable and causing the condensate
to collapse upon itself. In a system with finite volume, however, the zero-
point kinetic energy of the atoms provides a stabilizing influence. For a gas at
zero temperature, the net result of these effects can be determined by solving
the non-linear Schroedinger equation (NLSE) for the wave function of the
condensate.” A numerical solution to the NLSE is found to exist only when Nj
is smaller than a limiting value Nomaz & Physically, this limit can be understood
as requiring that the interaction energy U be small compared to the trap level
spacing hw, so that the interactions act as a small perturbation to the ideal-gas
solution. For “Li in our trap, the predicted limit is about 1400 atoms.

H(1)
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Figure 1: The condensate energy H, plotted in units of Ngﬁ?/mfg, where Iy = (h/mw)!/?

is the length scale of the single-particle trap ground state. The upper curve corresponds

to No = 0.48|a|/ly, the middle curve to No = 0.68|a|/lp, and the lower curve to Ny =

0.87 |a|/lo. It is evident that a local minimum in H exists near [ = lp if Np is sufficiently
low, indicating that a metastable condensate can exist.

The attractive two-body interactions are expected to lead to a collective
collapse of the condensate®1? The presence of a tunneling barrier for collective
collapse can be understood from a variational approach in which the trial
wavefunction is taken to be a Gaussian!® Fig. 1 shows the expectation of
energy H plotted versus condensate size [, when terms accounting for kinetic
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energy, potential energy of confinement, and the attractive interaction energy
are included. It can be seen that for sufficiently small Ny, a local minimum
exists, indicating that a metastable condensate is possible. For larger Ny,
however, the minimum vanishes, and the system will be unstable.

The variational model also allows exploration of the dynamics of the con-
densate, if [ is interpreted as the coordinate of a quasiparticle moving in the
potential H(l). The energy levels of the quasiparticle potential then corre-
spond to excitations of the “breathing mode” of the condensate. In particular,
Stoof has calculated decay rates for the metastable state due both to thermal
fluctuations and to quantum mechanical tunneling through the barrier!? The
decay rate is found to be negligible until Ny is within a few hundred atoms of
Nomaz, for conditions comparable to our experiments. Under our conditions,
the collective collapse of the entire condensate is expected to be the dominate
decay mode, as this breathing mode is the only mode found whose excitation
frequency approaches zero as Ng = Nomaz

The dynamics of the collapse itself are also interesting, but a detailed
theoretical description would be difficult if the density becomes large enough
that many-body interactions must be considered. However, while the density
remains low, the evolution of the condensate can be described by the motion
of the quasiparticle in the potential H. By calculating this trajectory and
including losses due to inelastic collisions, Stoof has found that essentially
all the collapsing atoms are ejected from the trap before the density rises so
high that the dilute-gas approximation becomes invalid !? For a trapped gas at
T > 0, only those atoms not initially in the condensate will remain after the
collapse, so the gas will be in a non-equilibrium distribution. Elastic collisions
rethermalize the gas, and Ny will grow again. If the gas is actively cooled, then
the condensate will continue to fill and collapse until either 7" = 0 is reached
or no atoms remain. We have modeled the population dynamics of this system
using the quantum Boltzmann equation, and show a typical result for Ng() in
Fig. 2. These calculations will all be elaborated upon in a future publication 1z

3 Experiment

The apparatus used to produce BEC has been discussed in detail in previous
publications?'31* The magnetic trap is an Ioffe design, constructed from six
cylindrical permanent magnets. The atoms are trapped in the doubly spin
polarized ground state, where they experience a nearly symmetric harmonic
potential with oscillation frequencies near 150 Hz. The magnetic field at the
center of the trap is directed along the z-axis, with a magnitude of 1003 G.
This field configuration prevents losses due to nonadiabatic spin-flip transitions
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Figure 2: Evolution of the number of condensate atoms during evaporative cooling. At early
times, corresponding to high temperatures, the number of condensate atoms is negligible,
but as the gas is cooled to the critical point, Ny begins to rise. When Ny approaches the
stability limit Ngmaz, the rates for thermal and quantum mechanical fluctuations increase,
until eventually the condensate collapses. It is expected that the entire condensate collapses
at once, effectively reducing Ng to zero. Elastic collisions then repopulate the condensate,
and the cycle continues until too few atoms remain to cause a collapse. The remaining atoms
are then gradually lost through inelastic collisions.

which can occur near a field zero. The trap is loaded from a laser-slowed atomic
beam, and the dissipation needed to capture the atoms is provided by six laser
beams tuned near the 2S,/; (F = 2, mp = 2) & 2P3/, (F = 3, mp = 3)
cycling transition. The number of trapped atoms N reaches a maximum of
approximately 2 x 108, after a few seconds of loading. These atoms are pre-
cooled to about 200 uK by Doppler laser cooling, and have a peak density of
roughly 1 x 10! ¢cm?®

After switching off the laser beams, the atoms are further cooled by forced
evaporative cooling. The hottest atoms are driven to an untrapped ground
state by a microwave field tuned just above the (F = 2, mp = 2) & (F =
1, mp = 1) Zeeman transition frequency of approximately 3450 MHz. As
the atoms cool, the microwave frequency is reduced. The frequency vs. time
trajectory that maximizes the phase-space density of the trapped atoms is
calculated ahead of time!® and depends on the elastic collision rate and the
trap loss rate. The elastic collision rate nov is roughly 1 s™*, with cross-section
o = 8ma? ~ 5x 10713 cm?. The collision rate is apprommately constant during
evaporative coolmg The loss rate due to collisions with hot background gas
atoms is 1.6 x 1072 s71, and inelastic dipolar-relaxation collisions occur with
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a rate constant of 107'* ¢cm®/s!® Quantum degeneracy is typically reached
after roughly 200 seconds, with N & 10° atoms at 7' & 300 nK, although
fluctuations in the loading conditions produce some variation in the results of
evaporative cooling. Lower temperatures are reached by extending the cooling

time.

After evaporative cooling, the rf field is removed, and the atoms are al-
lowed to equilibrate for a few seconds. The spatial distribution of atoms is then
imaged tn situ using an optical probe. The single-particle harmonic oscillator
ground state of our trap has a Gaussian density distribution with a 1/e-radius
of 3 pm. The resolution of the imaging system must therefore be sufficient to
detect such a small object. In our original experiment? the imaging resolu-
tion was not sufficient, but the presence of the condensate was deduced from
distortions observed in images of quantum degenerate clouds. We have since
developed a comprehensive model of these distortions, which is explained in
detail in ref.'7?. In that work, we find that the presence of a condensate should
cause such distortions, given the imaging system that was used.
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Figure 3: A schematic of the imaging system used for in situ phase-contrast polarization
imaging. A linearly polarized laser beam is directed through the cloud of trapped atoms
located at A. The probe beam and scattered light field pass out of a vacuum viewport B,
and are relayed to the primary image plane G by an identical pair of 3-cm-diameter, 16-
cm-focal-length doublet lenses C and F. The light is then re-imaged and magnified onto a
camera J by a microscope objective H. The measured magnification is 19, and the camera
pixels are 19 um square. A linear polarizer E can be used to cause the scattered light and
probe fields to interfere, producing an image sensitive to the refractive index of the cloud.
The system is focussed by adjusting the position of lens F, which is mounted on a translator.
Reprinted from Ref. !® by permission.

We have subsequently improved our imaging, and now use a system shown
schematically in Fig. 3. With the polarizer E removed, it can be used to mea-
sure the density distribution by absorption imaging, in which the absorptive
shadow of the atoms is imaged onto the camera. However, the atom cloud
causes both an attenuation and a phase shift of the probe laser beam. Near
resonance, the phase shift can be large, and any imaging system with finite
resolution will be sensitive to this phase to some extent. This sensitivity can
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cause significant image distortions, which are readily detected through their
dependence on the probe detuning A. In order to eliminate such distortions, it
is necessary to reduce the index of refraction by using large A. However, since
the absorption coefficient decreases as A~2, while the phase shift decreases as
only A~1, eliminating the distortions can leave the absorption signal too small
to be detected.

This problem can be solved by using phase-contrast imaging, a common
technique in microscopy. We have developed a sensitive method for phase-
contrast imaging, in which the signal depends linearly on the dispersive phase
shift, by exploiting the birefringence of the atoms in a strong magnetic field s
By passing the probe light through a polarizer (E in Fig. 3), the scattered
light and probe light can be made to interfere, thereby producing a signal
proportional to their relative phase.

The probe beam is pulsed on for a duration of 10 s, at an intensity of 250
mW /em? and with A in the range 20T < |A| < 40T, where T' = 5.9 MHz 1s
the natural linewidth of the transition. Only one image can be obtained under
these conditions, because each atom scatters a few photons while being probed,
heating the gas to several puK. The detected signal intensity 1s proportional to
the column density of the trapped atoms.

Fig. 4 shows radial signal profiles, which are obtained from the images by
angle-averaging the data around the ellipse defined by the trapping potential.
The various curves are the results of our analysis, which will be described in
the following section.

4 Image Analysis

We assume that the gas is in thermal equilibrium, and fit 7" and Ny to the data.
Any two of N, T, or Ny completely determine the density of the gas through the
Bose-Einstein distribution function. Given T and Ny, the density is calculated
using a semi-classical ideal-gas approximation for the non-condensed atoms!®
and a Gaussian function for the condensate. The semi-classical distribution
was compared to an exact calculation, and found to be accurate, except for a
temperature shift as noted in ref!®. The results of the fits are shown by the
solid lines in Fig. 4.

For temperatures sufficiently greater than the critical temperature, the
gas can be described by the Boltzmann distribution, which predicts a Gaussian
density profile. The long-dashed lines in Fig. 4 are Gaussian functions fit to the
tails of the distributions, which approximate the data only in Fig. 4(a), where
the fit to the Bose-Einstein distribution indicates a near-degenerate condition,
with Ng ~ 1. Fig. 4(b) shows three distributions for which No > 1. For
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Figure 4: Spatial image profiles of trapped ultracold "Li gas. The vertical axis gives the
magnitude of the phase-contrast signal intensity relative to the probe intensity, which is
proportional to the column density of the gas. The data points are taken from observed
images. The solid curves are calculated by fitting Bose-Einstein distributions to the data,
the short-dashed curves are the same distributions with the condensate atoms removed, and
the long-dashed curves are classical (Gaussian) distributions fit to the tails of the data.
The calculated signals are convolved with a Gaussian function to account for the limited
resolution of the imaging system, assuming an effective resolution of 4 pum. For the data in
(a), the probe detuning was +191 MHz, and the fitted distribution has 9.0 x 10* atoms at
a temperature of 309 nK. The number of condensate atoms is ~1, indicating that the gas
is just approaching degeneracy. In (b) a sequence of profiles that exhibit condensate peaks
are shown. From the strongest to weakest signals, the total number of atoms and fitted
temperatures are: 1.01 x 10° atoms at 304 nK; 2.6 x 10* atoms at 193 nK; and 6.6 x 10°
atoms at 122 nK. The corresponding numbers of condensate atoms are 500, 810, and 270,
respectively. The probe laser detuning for these data was -130 MHz. Reprinted from Ref.!?
by permission.

these distributions, the density is distinctly non-Gaussian, due to an enhanced
central peak. Comparison between Fig. 4(a) and the upper curve in Fig. 4(b)
is striking, as these distributions correspond to nearly the same temperature,
but differ by only about 10% in number. From this comparison, it is clear
that the gas has reached the degenerate regime, where Boltzmann statistics
are inadequate.
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Using the fitting procedure described above, we have found degenerate
conditions for T between 120 and 330 nK, and for N between 6,800 and 135,000
atoms. In all cases, Np is found to be less than 1300 atoms. The uncertainty
in focal position of the imaging lens is the dominant source of error in our
determination of Ny and leads to an uncertainty of about a factor of twol”

In the analysis so far we have assumed that the gas is ideal, but inter-
actions are expected to alter the size and shape of the density distribution.
Mean-field theory predicts that interactions will reduce the 1/e-radius of the
condensate from 3 um for low occupation number to ~2 pm as the maximum
Ny is approached 210 If the smaller condensate radius is assumed in the anal-
ysis, the maximum observed value for No decreases, becoming ~1050. The size
of the condensate is not expected to change appreciably for No < 1000. Effects
of the interactions on the distribution of the non-condensed atoms are not ex-
pected to be significant, because at the critical density the mean interaction
energy of ~1 nK is much smaller than T.

5 Conclusions and Future Experiments

The measurements described above have demonstrated that BEC can occur in
a gas with a < 0. The results of our analysis indicate a number of condensate
atoms which is consistent with the limit predicted by mean-field theory.

An exciting prospect for the future is to experimentally study the col-
lapse itself. The collective collapse of the condensate is predicted to occur
by either macroscopic quantum tunneling through the barrier shown in Fig.
1, or by thermal excitation of the entire condensate over the same barrier.
The collapse/fill model described in §2 predicts that the values of Ng should
fluctuate between zero and the limiting value during evaporative cooling. We
have observed fluctuations in Np, but it is not clear whether they are intrin-
sic or whether they are caused by variations in trap loading and evaporative
cooling. If these variations can be controlled and No measured precisely, then
measurement of the fluctuations should provide detailed information on the
dynamics of the collapse and growth of the condensate. Thus a negative scat-
tering length condensate may be one of the few areas in physics for which
macroscopic quantum tunneling can be explored experimentally. We believe
that, through experiments such as these, studies of condensates with a < 0
will provide important insights into many-body quantum theory.
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