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A gcneral description of weak measurements is prescnted. The "weak value" of an
operator in pre- and post-selected systems is described both mathematically and using
physical arguments. An optical experiment in which a measurement of a weak value has
been realized is described. The possible Use of pre- and post-selection as a mCans to
amplify and detect weak effects is also discussed.

1. Introduction

A measurement in quantum mechanics generally consists of two elements, a measur-
ing device and the system to be measured. In an ideal measurement, the interaction
between these two elements results in the measurement of an eigenvalue of an ob-
servable of the system and the system is left in an eigenstate of the measured
observable. Any subsequent measurement of the same observable on the same sys-
tem will produce the same result. In a non-ideal measurement incomplete informa-
tion is obtained. The measurement does not leave the system in one eigenstate of
the observable. Recent theoretical and experimental work has examined this class
of measurements which have been called "weak measurements". I

Weak measurements are of fundamental interest because quantum mechanical
measurements are never ideal. The strength of a measurement can be rated on
a scale from zero to one, where zero gives no information about the observable
and one is an ideal measurement in which the observable is determined exactly.
As all experimental measurements fall somewhere between zero and one on this
scale, an understanding of non-ideal measurements is important in understanding
the quantum mechanical measurement process.

In a recent series of articles discussing weak measurements,1-5 the concept of a
"weak value" was introduced. The weak value involves a weak measurement per-
formed on systems during the time between a pre- and post-selection. The pre- and
post-selections are accomplished via nearly ideal measurements which select a par-
ticular eigenstate of an observable. The concept of weak values was introduced
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by Aharanov, Albert and Vaidman (AAV)l and demonstrated recently6 in an optical
experiment proposed by Duck, Stevenson and Sudarshan (DSS).2 The experiment
showed that under certain circumstances the weak value of an observable can be far
outside the range of eigenvalues of the operator corresponding to that observable.

2. Theory

In general, a measuring device may be represented by a Hamiltonian Jl, which cou-
ples the measuring device with the system to be measured. This may be represented
by'

1I = -9(I)OA (1)

where A is the operator of the observable to be measured, with eigenvalues a;, q
is the canonical variable of the measuring device with conjugate momentum p, and
g(t) is a function with compact support near the time of measurement which is
normalized so that its integral over time is unity. In an ideal measurement of a
system, the initial and final values of P are known precisely. The difference pr - Pi is
equal to an eigenvalue Cli of the observable. Since q and P are conjugate variables,
the uncertainty principle prevents precise knowledge of both quantities. In most
measurements the uncertainty in q is large enough to achieve a sufficiently small
variance in p. Since one generally has at least some knowledge of q (it will typically
be bounded by experimental limitations), there is neceS8arily some uncertainty in
p. In a weak measurement, the uncertainty in p is sufficiently large that the system
is left in a superposition of eigenstates of the operator A after the measurement.s

No unique eigenvalue (lj is measured.
To mcasure the weak value, systems are pre-selected via a nearly ideal measurc-

ment in some eigenstate IlJrin) of an observable. The systems then interact with a
measuring device which is weakly coupled to the observable A. Finally, the systems
are post-selected via another nearly ideal measurement in some eigenstate Illrr) of
an observable. The pre- and post-selection observables are usuaJlr chosen to be
non-commuting. The weak value of an observable with operator A is defined hy
AAV to equal

(2)

where A is the operator of the weak measuring device. Under certain circumstances
unusual results can be obtained for the weak value. In particular, if the initial and
final s~ates are nearly orthogonal, Aw can be much larger than any oCthe eigenvalues
Cli of A. This amplification of the eigenvalue separation is of both theoretical and
experimental interest.

A more complete understanding of the nature of the weak value requires a for-
mal description of the measuring process. The formalism presented here follows
that of DSS.2 For simplicity, the initial state of the measuring device in the basis
of both conjugate variables, q and P, is assumed to be a Gaussian distribution.
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Restriction to a Gaussian distribution is not necessary but makes the mathematics
more transparent. Initially the measuring device is in a state given by

(3)

in thc q representation and

(1)
in the p representation. 6. is a measure of the initial uncertainty in the distribution

6.q = 6., 6.p = 1/(M) (5)

with li = I. The systems to be mea.'mred are pre-selected in a state l>IIin) and
p_ost-selected in a state l>IIr)which call be expanded in terms of the eigenstates of
A:

(6)

and

The result of the interaction of the measuring device with the system is given by

I"r) = ("rloxp[-; J lldIJl"'o,I",o)

= L, a,p: J dq exp[-6.'(p - ",)'Jlp,

(7)

(8)

ilLthe p representation. For large 6., representing a small uncertainty in p, the state
of the measuring device after the interaction is a series of narrow peaks centered
on the eigenvalues a; of A. This situation constitutes a strong measurement of the
systcm. In contrast, if 6. is small, so the uncertainty in the initial value of p is
large compared to the eigenvalue spacing, the final state of the measuring device is
a series of overlapping Gaussians. In this situation the eigenvalucs of the operator
A are not resolved by the measurement.

It is important to note that the sum in Eq. 8 involves complex coefficients and
not just a sum of squares of real numbers. Therefore, interference can occur which
can dramatically~ect the measured distribution. Under certain restrictions, the
centroid of the distribution given by Eq. 8 is approximately located at Aw. This
can be demonstrated as follows:

I"r, = ("rle"AI"'o,I",o'
"("rI",", + ;«"rlAI",", + ... )1",,,)
= (>IIrI>II;n)(l+ iqAw + ... )14>;,,)

::::(>IId'P;n)J dq e;qAw exp[_q2/46.2)1q)

(9)
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where qAw is assumed small compared to unity. Transforming to the p representa-
tion gives

(10)

When the above approximations are valid, the sum of the shifted momentum dis-
trihutions can be replaced by a single distribution shifted by Aw. Under certain
pre- an~ post-selection conditions, Aw can be much larger than any of the eigenval-
ues of A, due to the interference of the complex coefficients in Eq. 8.

Aw is approximately equal to the location of the centroid of the distribution
only when the higher order terms in the exponential of Eq. 9 arc negligible. This
restriction requires

(11)

and
(12)

for all n > L Consequently, Aw has physical meaning only when its value lies within
the initial spread of values of p for the measuring device. Aw cannot be outside the
spectrum of uncertainty of the measuring device. However, it is possible to record
a signal which is well defined and centered around a value which is far outside the
range of possible eigenvalues of .Ii.

The price for obtaining this rather strange result is a loss in signal size. The
interference which produces the shift observed in the measurement of the weak
value also reduces the signal. To obtain a large weak value, the pre- and post-
selected states must be very nearly orthogonaL The weakness requirement means
that the interaction, represented by the coupling Hamiltonian, only weakly perturbs
the systems between the pre- and post-selection. Therefore, it becomes increasingly
unlikely for systems to pass both the pre- and post-selection as the overlap between
these states diminishes.

3. Interpretation

The following inlerpretation of the weak value has been suggested.3·9-11 It is as-
sumed that the pre- and post-selections arc ideal measurements. Detected systems
are known to have been in the state IWi,,} immediately after the pre-selection and
in the state I'l'f} immediately after the post-selection. The wave function is well de-
fined at those two points of time. Since the weak measurement is assumed to have
a nearly negJigible effect on the systems between the two selections, the systems arc
assumed to have the eigenvalues of their respective selected states throughout the
intermediate time. 'Ve can define an operator

(13)

equal to the sum of the operators corresponding.!:o the pre- and post-selection. In
a normal measurement, the expectation value of C may differ greatly depending on
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the time ordering of the measurements of A and B if their corresponding operators
are non-commuting. However, if the interaction is sufficiently weak so that the
system is negligibly effected by the measuring process, then the measurement is
independent of the time ordering. In the intermediate time between the pre- and
post-selection, the expectation value of C is the sum of the expectation values A
and B.

(&;:),

t

0; ,
Fig. 1. The pre-selection of the spin is chosen so that all p&rticles are ;nitially;n the spin-up state in
the i: direction. The post-selection selects only those particles wl,ich are fmally in the spin-up state
in the € direction, which is at an angle 01with the i: axis. Between the pre- and post-selections,
a weak measurement of the spin component in the g direction is performed, where I} = 01/2. The
result of the measurement is the value (<7e)w which is approximately equal to [cos(0I/2)]-I. As 01
approaches 11", (<7e)w becomes much larger than the original spin of the particles. In this figure,
01= 150' giving (<7e)w = 3.9.

A system of spin-~ particles has been used to illustrate this interpretation.3 The
weak measurement is performed with a Stern-Gerlach device which gives the parti-
cles a spin dependent momentum kick. The weakness requirement is met by making
the momentum kick insufficient to resolve the spin states given the transverse mo-
mentum spread of the beams. The particles travel along the i direction with the x
component of spin pre-selected in the +~ state. The final state is post-selected in
the +! in a direction t oriented at an angle a with respect to x and transverse to
the direction of propagation (see Fig. 1). The operator C is given by

C == o-r + o-~ = 2 cos(0:/2)o-e (14)

where 0 :::;0:/2 is the angle that bisects x and { Since the expectation values of
both o-r and o-Eare known to equal 1 for systems which pass both the pre- and
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post-selection this equation can be solved for the expectation value of &0:

(15)

The w subscript denotes that this value is the weak value of the operator. (ue)w is
precisely equal to the weak value defined by Eq. 2. As u approaches 1r, the weak
values becomes extremely large. If the Stern-Gerlach device which performs the
weak measurement is oriented to measure the spin component in the 0 direction,
then the momentum change in the beam will reflect this large value. When the
limitations of Eqs. 11 and 12 are met, the resulting distribution of particles will be
centered around the weak value (uo)w. The physical basis of the limitation on the
size of the weak value is clear. Once the weak value becomes sufficiently large, the
coupling to the measuring device cannot be neglected. Therefore, the measurement
is no longer weak.

4. Experiment

Recently an optical experiment was proposed2 and performed6 which demonstrated
a measurement of the weak value of an operator. A laser beam replaced the beam of
spin-~ particles and the pre- and post-selections were performed by optical polariz~
ers. The weak measurement was performed by a birefringent crystalline quartz
plate. The polarization dependent index of refraction of the birefringent plate
caused a small spatial shift between the positions of the centroids of the two or-
thogonally polarized components of the laser beam. The difference in shift for the
ordinary and extraordinary rays was much less than the beam waist of the laser,
thus satisfying the condition of weakness.

The experimental configuration is shown in Fig. 2. The heam from a frequency
stabilized He--Nelaser was collimated to a beam waist of 1.52 mm. A 400 mm focal
length lens focused the beam onto the post-selection polarizer. The pre-selection
was performed by a polarizer with its axis oriented at 0:::::: 7£/4 with respect to the
x-axis. The weak measurement was performed by passing the laser beam through
a birefringent plate oriented with the optic (extraordinary) axis along the x-axis.
The plane of the plate was rotated about the optic axis by an angle 8 with respect
to the propagation (z) axis. This plate produced a small relative shift in the y
direction between the two orthogonal polarization components. The post-selection
was performed with a second polarizer oriented at an angle /3 with respect to the
X-axiS. The location of the second polarizer determined the beam waist at the
interference point, Wo :::::55 {tm. Immediately after the polarizer the light was
projected by a short focal length lens onto a photodiode which was scanned across
the distribution.

In analogy to the spin-~ particles, the polarization of the photons replaces the
spin state of the particles. Instead of up and down spin states, the horizontal and
vertical polarization directions form the orthogonal states of the system. The weak
value of the displacement in the direction bisecting the pre- and post-selection is
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given by
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Fig. 2. Schematic diagram of the apparatus. The output of a frequency stabjJjzed He-Ne laser is
collimated, focused and polarized at an angle a relative to the x-axis by telescope T, lens L1, and
polarizer PI, respect;vely. A birefringent crystalline quartz plate Q with optic axis (OA) aligned
along the x-axis is located near the focus of the laser beam. Q perfonns a weak: measurement
by spatially separating the ordinary and extraordillary polarization components along the y-axis
by a distance small compared to the focused beam waist woo Polarizer P2, whose axis makes an
angle fJ with the x-axis, post-selects the rmal poJarization state. Lens L2 expands the image onto
a photo-detector D. D is scanned along the y-axis, recording the intensity function I(y).

a I
(Dbi)w '" :; [ws(P - 0)]

where a is the actual displacement between the two polarizations and the displace-
ment eigenvalues are ±1/2a. The weak measurement was performed along the y_
axis, which did not necessarily bisect the pre- and post-selection. The more general
expression for the weak value along the y-axis as a function of a and f3 is

(D) _ ~ ws(p+ 0)
y w- 2 cos(f3-a)· (17)

Since j3 - a is nearly 11:/2 for the interesting case and a = 11:/4 for this experiment,
we can define t; = j3 ~ a - ](/2 where t; measures the deviation from orthogonality.
In terms of t; the total displacement is

a
(D,)w'" - wt(,).2 (18)
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Fig. 3. Experimental data and fits to the data using Eq. 19. The horizontal axis is scaled to
measure y at the position of the focus of the laser be.am. The recorded intensity is due to a
superposition o( the two initial Gaussian rnstributions which are separated by a small distance
0.:::=0.64 pm, which is much less than the Gaussian beam waist, wo = 55 I,m. (a) a = fJ = "/4,
corresponrnng to aligned polarizers. In this case the measured intensity is the result of constructive
addition of two Gaussian rnstributions. The dotted line, which almost perfectly overlaps the data,
is the fit. (b) a = 1'/4,13 = 31'/4 + 2.2 x 10-2, corresponding to a mcas\.lI"ement of the weak
value. The centroid of the rnstribution is shifted by Aw = 12 I'm, which is approximately 200..
(c) a = 1':/4, fJ = 3,,/4, corresponding to crossed polarizers, or orthogonal initial and final states.
In this case, Aw no longer corresponds to the shift. The separation of the two peaks is '" 1200..

Figure 3 shows the data for three relative positions of the polarizers. Figure 3a
is the case when both polarizers axes are parallel, Q ~ (J = 1r/4, for which Eq. 18
gives Aw = O. This zero value is due to the equal population of both polarization
states. Figure 3b shows data for (; = 0.022. The centroid of the distribution is
shifted by approximately 20a. The criteria for identifying the shifted centroid with



Brief Reviews

Weak Afea8u"menl8 1721

the weak value are fulfilled so that the magnitude of this shift equals the weak
value Aw. Figure 3c shows data for E == O. In this case, the weak value no longer
represents anything physical. As E _ 0, Aw _ 00 violating the requirement that
Aw 4;: wo, which is the optical equivalent of Eq. 11. All three sets of data were fit
using the exact distribution calculated from classical interference:

[ (
-(y + a/2)'

)1(y) == 10 cos(a)cos(,8)exp w5

(
-(y - a/2)'

)]
'+ sin(a) sin(,8) exp w5 . (19)

Though this expression is purely classical, it exhibits the same interference induced
shift as the quantum system.

From knowledge of the indices of crystalline quartz12 and geometric factors we
calculate a == 0.64 /-tm which is approximately equal to the wavelength of the light
used. From the fits to the data we were able to extract values of 0.65 ± 0.05 /-tm
and 0.62 ± 0.04 /-tmfor the data in Fig. 3b and 3c, respectively. Although in theory
we should have also been able to extract a from the data in Fig. 3a, the lack of
detector resolution, among other factors, precluded it.

5. Application to Practical Measurements

The amplification produced by the post-selection process may be useful for practical
measurements of weak effects. For example, in the optical experiment previously
described, the birefringence of quartz was accurately measured. However, the de-
structive interference of the unresolved eigenstates produced by the post-selection
process causes a loss in signal intensity, in addition to the strong modulation in
signal shape. Therefore, it is not obvious a priori that a small parameter (a in
the experiment above) can be more accurately extracted from a signal resulting
from the destructively interfered distribution than from the constructively inter-
fered distribution which is obtained when the pre- and post-selected states arc the
same.

In order to answer this question, we compared measurements where two eigen-
values are unresolved using three separate techniques: a constructively interfered
measurement (CI) where ('ltinl'lt!) == 1, a measurement of the weak value (WV)
where {'ltinl'ltr} 4;: 1, but where the restrictions imposed by Eqs. 11 and 12 are still
satisfied, and a destructively interfered measurement (01) where ('ltin 1'It!) == O. In
terms of the quantities defined in Sec. 4, CI corresponds to a: == j3 == 7r/4, 01 corres-
ponds to Ct == 7r/4, ,8 == 37r/4, and WV corresponds to a: = lr/4 and j3 == 37r/4 + E,
with E such that Aw == 1/2a cot(E). In the case ofthe CI measurement, the recorded
signal will have a large amplitude, but the effect of the small interaction with the
weak measuring device will produce little change in the recorded signal shape. In
the 01 case, the recorded signal will have small amplitude, but the signal shape will
be strongly affected.
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For each of the three cases, the expected signal was numerically generated for
various values of the experimental parameters. Random noise was then added to
these signal distributions. Only statistical noise representing random fluctuations
in the detected signal intensity was included; noise due to systematic effects was not
accounted for. Therefore, the numerically generated data correspond to ideal "shot-
noise" limited "experiments". This "noisy" data was then fit to the exact expression
for the final distribution, Eq. 19, and a value for the eigenvalue separation a was
extracted. Since the relative noise is proportional to 1-1/2, where 1 is the measured
signal intensity, the CI data has the smallest relative noise, and the DI data has the
greatest.

The initial pre-selected distribution was a Gaussian with width parameter Wo :::0

1 and height 10(N, .6.y), where N is the total number of particles in the initial
distribution, 6.y is the bin width of data points on the y-axis, and 10 is defined by
the sum over the data bins as N ::::Ei To exp( -yl fwg). Equation 19 and the values
of 10, a, Ct, and f3 determined the exact post-selected distribution. Statistical noise
was added to each data set using a pseudo--random routine to generate a Poissonian
deviate.13 The resulting distribution was fit to Eq. 19 using the Marquart-Levenberg
method.13 The fitted parameters were a and the initial center of the distribution
Yo, while all other parameters were fixed. The resulting value for a was compared
for the CI, DI and WV ca.;;es. This procedure was repeated sixteen times for each
combination of N, 6.y, and a and the mean value i.i and the deviation from the
mean ba, were calculated.

Figure 4 shows plots of numerically generated CI, DI and WV data and the
corresponding best fit curves for the case where N:::: 107, a:::: 0.01, and .6.y:::o0.1.
Because of the large value of N, the C1 data shown in Fig. 4a has small relative noise
and the fit to the data is almost indistinguished from the data itself. Figure 4b shows
a measurement of the weak value, where Aw :::O,31.6a.In this case, the signal size is
significantly smaller because of the nearly complete cancellation by the destructive
interference. The noise is now readily visible. Figure 4c shows data corresponding
to the DI case. Again, the noise is a significant fraction of the signal size. For
the three cases, the fitted values for a were aCt :::: 0.0043, awv :::: 0.0090, and
am ::::0.0098, which should be compared to the exact value a =: 0.01. Therefore,
the DI case gave the most accurate and the CI data gave the least accurate measure
of a.

This procedure was repeated for 168 different combinations of the parameters
N, a, f::1y and Aw. N was allowed to range between 106 and 1012, a between
0.001 and 0.1, Aw between 100a and lOa, and 6.y between 1 and 0.01. Certain
combinations of these parameters were eliminated because the interfered signal size
was too small (T(Y)max < 1 for 0: ::::7rf4, f3:::: 37rf4) and others were eliminated
because they did not fulfill the weakness criteria (Eqs. 11 and 12). In each of the
168 cases bam < bawv < bact and lam - al < lawv - al < lac! - al. A sample of
the results arc displayed in Table 1. In all cases, the accuracy of the measurement
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Fig. 4. Numerically generated data and fits. The boxes represent the data which were generated
by computer by adding pseudo-random nojse to the exact post-selected distribution calculated
from Eq. 19. The lines are besl fits of Eq. 19 to the data, witl! tl".' eigenvalue separation a as
the r.tted paramder. The parameters are [0 = 8 X 105, L!.y = 0.1, wo = 1.0, and a = 0.0l.
(a) c<= {3= ,,/4, corresponding to a constructive interference (CI) measurement. The statistical
noise is a small fraction of the signal The best r,t value for the eigenvalue spAcing is a = 0.0043.
(b) a = 1(/4, fj = 3"/4 + 0.0632, corresponding to a measurement of the weak valu" (WV) with
Aw:: 31.6a. The b<::stfit gives a = U.0096 (c) c<= 1':/4, j3 = 37'/4, corTesponding tu a destruclive
interference (DI) measurement. Even though the statistical noise is a significant fraclion of the
signal, the DI measurement produced the most accurate measurement a = 0.0098.

improved as the size of the weak value was increased, or equivalently, as the post-
selected state became more orthogonal to the pre-selected one.

6. Conclusion

The weak value of an operator has been shown to be a physically measurable quan-
tity and a measurement of the weak value has been realized in an optical experiment.
Weak values can be understood through standard quantum mechanical ana1ysis as
the result of interference of the eigenstates of an operator. When the weakness
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Table 1. Typical results of the nUl"llerical simulation. The column labelled i.Ifor the CI, Of, and
WV cases is the average fitted value of a for 16 numerically generated "noisy" data sets for each
given combination of parameters. The following parameters were varied: N, lhe total number
of particles in the experiment; 6y, the step size between data points along the y-axis; a, the
eigenvalue spacing; and A ••, the size of the weak value, which in turn determines ~ through Aw =
1/2a cot(~). 6a/a is the fractional RMS deviation from the mean for the 16 trials. As Aw increases
and ~ decreases (~ = 0 for OJ), lhe accuracy of the measurement increa..~es.

N ~, Aw/a " 16al/a
IxI06 0.1 0.0100 exact

0.022 2.5 x tOO Cj
W 0.01l 5.5 x 10-1 WV

0.0098 9.2 x 10-2 Dr

lxI07 0.1 0.01 exact

0.0078 1.2 X 10° CJ
10 0.01 1.3 X 10-1 WV

0.01 3.3 X 10-2 Dr

I X 108 0.1 0.0032 exact
0.0081 2.7 X 10° CJ

3l.u 0.0028 4.9 X 10-1 WV
0.0032 3.1 X 10-2 Dr

lxlOs 0.032 0.0032 exact
0.0082 3.0 X 10° CJ

31.6 0.0030 1.6 X to-I WV
0.0031 3.4 X 10-2 Dr

Ix1010 0.1 0.001 exact
0.0024 2.5 X 10° Cj

10 0.00094 4.4 X 10-1 WV
0.0010 9.6 X 10-3 Dr

Ix10JO 0.1 0.001 exact

0.0019 2.2 X 100 CJ
100 0.00099 6.4 x 10-2 WV

0.0010 7.6 X 10-3 Dr

1X1012 0.01 0.001 exact
o.oon 8.1 X 10-1 Cj

10 0.0010 4.7 X 10-2 WV
0.0010 8.4 X 10-4 Dr

1xlO12 0.01 om exact
0.01 1.1 X 10-2 cr

10 0.01 5.u X 10-4 wv
om 1.2 X 10-4 Dr

condition is satisfied by the measurement, the sum of small shifts can be replaced by
a single shift equal to the weak value. Under some conditions this average shift can
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be much larger than any of the small shifts which produce it. Using a model which
includes random noise, we have shown that this effect may be a useful technique
for amplifying and detecting small effects. Even when the weak value becomes
unphysical in the limit of orthogonal initial and final states, the interference due
to the weak measurement still produces shifts which can be large compared to the
eigenvalue separation. In this limit the intensity is a strong function of a which can
be used to make accurate measurements of small effects. The unique properties of
weak values is a continuing field of study.14
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